Skip to main content
Log in

Electroluminescence in SrTiO3:Cr single-crystal nonvolatile memory cells

  • Invited rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal–insulator–metal (M–I–M) structures involving transition-metal oxides and, more recently, also perovskite oxides with resistive switching effects have attracted substantial interest in research aimed at nonvolatile memories of nanometer dimensions. Although some models are presently under discussion, it is still not clear whether the fundamental switching mechanism is an interface or a bulk property, or a combination of both. Extended defects, such as dislocation lines and changes in the oxygen vacancy concentration, are considered responsible for the conducting state, and local reduction/oxidation processes have been proposed to be responsible for the resistive switching. In addition, the role of dopants has not been discussed in depth. Here we report on an electric-field-controlled electron trapping/detrapping process involved in the resistive switching in Cr-doped SrTiO3. Electroluminescence (EL) measurements reveal that during resistive switching, light emission is observed only in the switching transition from high to low conductivity. The EL spectrum is typical for Cr3+ in an octahedral ligand field, indicating that the switching process involves trapping/detrapping of electrons at the Cr site. With increasing conductivity of SrTiO3, we observe a change from the predominant \(^{2}{E}\to^{4}{A}_{2g}\) (R-line) to the vibronically red-shifted \(^{4}{T}_{2}\to^{4}{A}_{2g}\) transition, which points to a modification of the Cr-occupied lattice sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Watanabe, Appl. Phys. Lett. 66, 1770 (1995)

    Article  ADS  Google Scholar 

  2. C.H. Ahn, J.-M. Triscone, N. Archibald, M. Decroux, R.H. Hammond, T.H. Geballe, O. Fischer, M.R. Beasley, Science 269, 373 (1995)

    Article  ADS  Google Scholar 

  3. H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, H.K. Wickramashinghe, Nature Mater. 5, 383 (2006)

    Article  ADS  Google Scholar 

  4. W.R. Hiatt, T.W. Hickmott, Appl. Phys. Lett. 6, 106 (1965)

    Article  ADS  Google Scholar 

  5. G. Argall, Solid State Electron. 11, 535 (1968)

    Article  ADS  Google Scholar 

  6. K.L. Chopra, J. Appl. Phys. 36, 184 (1965)

    Article  ADS  Google Scholar 

  7. J.C. Bruyere, B.K. Chakraverty, Appl. Phys. Lett. 16, 40 (1970)

    Article  ADS  Google Scholar 

  8. S.Q. Liu, N.J. Wu, A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000)

    Article  ADS  Google Scholar 

  9. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000)

    Article  ADS  Google Scholar 

  10. V. Szot, R. Dittmann, W. Speier, R. Waser, Phys. Stat. Solidi 1, R86 (2007)

    Google Scholar 

  11. A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Appl. Phys. Lett. 83, 957 (2003)

    Article  ADS  Google Scholar 

  12. T. Fujii, M. Kawazaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Appl. Phys. Lett. 86, 012107 (2005)

    Article  ADS  Google Scholar 

  13. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004)

    Article  ADS  Google Scholar 

  14. C. Rossel, G.I. Meijer, D. Bremaud, J. Appl. Phys. 90, 2892 (2001)

    Article  ADS  Google Scholar 

  15. K. Szot, W. Speier, G. Bihlmeyer, R. Waser, Nature Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  16. M.J. Rozenberg, I.H. Inoue, M.J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004)

    Article  ADS  Google Scholar 

  17. Y. Watanabe, J.G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, S.J. Wind, Appl. Phys. Lett. 78, 3738 (2001)

    Article  ADS  Google Scholar 

  18. G.I. Meijer, U. Staub, M. Janousch, S.L. Johnson, B. Delley, T. Neisius, Phys. Rev. B 72, 155102 (2005)

    Article  ADS  Google Scholar 

  19. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature 388, 50 (1997)

    Article  ADS  Google Scholar 

  20. Y. Tokunaga, Y. Kaneko, J.P. He, T. Arima, A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 88, 223507 (2006)

    Article  ADS  Google Scholar 

  21. K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer, Phys. Rev. Lett. 88, 75508 (2002)

    Article  ADS  Google Scholar 

  22. S. Karg, G.I. Meijer, D. Widmer, J.G. Bednorz, Appl. Phys. Lett. 89, 072106 (2006)

    Article  ADS  Google Scholar 

  23. D. Choi, D. Lee, H. Sim, M. Chang, H. Hwang, Appl. Phys. Lett. 88, 082904 (2006)

    Article  ADS  Google Scholar 

  24. R.H. Hoskins, B.H. Soffer, Phys. Rev. 133, A490 (1964)

    Article  ADS  Google Scholar 

  25. D.E. Budil, D.G. Park, J.M. Burlitch, R.F. Geray, R. Dieckmann, J.H. Freed, J. Chem. Phys. 101, 3538 (1994)

    Article  ADS  Google Scholar 

  26. M.O. Selme, P. Pecheur, J. Phys. C 21, 1779 (1988)

    Article  ADS  Google Scholar 

  27. K.A. Müller, Proc. 1st Int. Conf. Paramagnetic Resonance, Vol. 1 (Academic Press, New York, 1963), pp. 17–43

  28. S.A. Basun U. Bianchi, V.E. Bursian, A.A. Kaplyanskii, W. Kleemann, P.A. Markovin, L.S. Sochava, V.S. Vikhnin, Ferroelectrics 183, 255 (1996)

    Article  Google Scholar 

  29. S.A. Basun, U. Bianchi, V.E. Bursian, A.A. Kaplyanskii, W. Kleemann, L.S. Sochava, V.S. Vikhnin, J. Luminesc. 66–67, 526 (1996)

    Google Scholar 

  30. A.J. Silversmith, W. Lenth, K.W. Blazey, R.M. Macfarlane, J. Luminesc. 59, 269 (1994)

    Article  Google Scholar 

  31. T. Feng, Phys. Rev. B 25, 627 (1982)

    Article  ADS  Google Scholar 

  32. L.E. Orgel, J. Chem. Phys. 23, 1004 (1955)

    Article  ADS  Google Scholar 

  33. A.M. Glass, J. Chem. Phys. 50, 1501 (1969)

    Article  ADS  Google Scholar 

  34. H.D. Meierling, Phys. Stat. Solidi B 43, 191 (1971)

    Article  Google Scholar 

  35. M. Grinberg, P.I. Macfarlane, B. Hendersson, K. Holliday, Phys. Rev. B 52, 3917 (1995)

    Article  ADS  Google Scholar 

  36. G.A. Torchia, O. Martinez Matos, P. Vaveliuk, J.O. Tocho, J. Phys.: Condens. Matter 13, 6577 (2001)

    Article  ADS  Google Scholar 

  37. G.A. Torchia, O. Martinez Matos, P. Vaveliuk, J.O. Tocho, Solid State Commun. 127, 535 (2003)

    Article  ADS  Google Scholar 

  38. Y. Tanabe, S. Sugano, J. Phys. Soc. Japan. 9, 753 (1954)

    ADS  Google Scholar 

  39. Y. Tanabe, S. Sugano, J. Phys. Soc. Japan. 11, 864 (1956)

    Article  ADS  Google Scholar 

  40. M. Grinberg, J. Barzowska, Y.R. Shen, K.L. Bray, B.V. Padlyak, P.P. Buchynskii, Phys. Rev. B 65, 064203 (2002)

    Article  ADS  Google Scholar 

  41. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Adv. Mater. (2007), in press

  42. M. Grinberg, W. Jaskolski, P.I. Macfarlane, B. Hendersson, K. Holliday, J. Luminesc. 72–74, 193 (1997)

    Article  Google Scholar 

  43. K.A. Müller, K.W. Blazey, T.W. Kool, Solid State Commun. 85, 381 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.F. Alvarado.

Additional information

PACS

71.30.+h; 78.60.Fi; 73.40.Rw; 78.55.-m; 85.30.Tv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, S., La Mattina, F. & Bednorz, J. Electroluminescence in SrTiO3:Cr single-crystal nonvolatile memory cells. Appl. Phys. A 89, 85–89 (2007). https://doi.org/10.1007/s00339-007-4207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4207-2

Keywords

Navigation