Skip to main content

Advertisement

Log in

Diel pCO2 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Most laboratory experiments examining the effect of ocean acidification on marine organisms use stable pH/pCO2 treatments based on average projections for the open ocean. However, pH/pCO2 levels vary spatially and temporally in marine environments, and this variation can affect organism responses to pH/pCO2. On coral reefs, diel pH/pCO2 variability at the individual reef scale has been reported in a few studies, but variation among microhabitats within a reef remains poorly understood. This study determined the pH/pCO2 variability of three different reefs, and three contrasting coral reef microhabitats (dominated by hard coral, soft coral, or open substrate) within each reef. Three SeaFET pH loggers were deployed simultaneously at the three microhabitats within a reef over a 9-day period. This was repeated at three different reefs around the Lizard Island lagoon. The loggers recorded pHT and temperature every 5 min. Water samples were collected from each microhabitat during four points of the tidal cycle (high, low, rising, and falling) and analysed for total alkalinity and dissolved inorganic carbon. The data show a clear diel pCO2 cycle, increasing overnight and decreasing during the day, in association with photosynthesis and respiration cycles. Diel pCO2 differed more between reefs than between microhabitats within reefs. Variation between reefs was most likely influenced by water flow, with the more protected (low flow) reefs experiencing a greater range in pCO2 (Δ 250 μatm) than the exposed (high flow) reefs (Δ 116 μatm). These results add to a growing body of the literature on the diel variation of pCO2 of shallow, nearshore environments and suggest that when projecting future pCO2 levels, it is important to consider reef metabolism as well as physical and hydrodynamic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albright R, Langdon C, Anthony KRN (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10:6747–6758

    CAS  Google Scholar 

  • Andersson AJ, Yeakel KL, Bates NR, De Putron SJ (2013) Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nat Clim Chang 4:56–61

    Google Scholar 

  • Anthony KRN, Kleypas JA, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666

    Google Scholar 

  • Bates NR (2002) Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange. Limnol Oceonography 47:43–52

    CAS  Google Scholar 

  • Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846

    CAS  Google Scholar 

  • Bates NR, Amat A, Andersson AJ, Reach F (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530

    CAS  Google Scholar 

  • Baumann H (2019) Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can J Zool 97:399–408

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Ceccarelli DM, Emslie MJ, Richards ZT (2016) Post-disturbance stability of fish assemblages measured at coarse taxonomic resolution masks change at finer scales. PLoS ONE 11:e0156232

    PubMed  PubMed Central  Google Scholar 

  • Cornwall CE, Comeau S, DeCarlo TM, Moore B, D’Alexis Q, McCulloch MT (2018) Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc R Soc B Biol Sci 285:20181168

    Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014a) Drivers of pCO2 variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge. Global Biogeochem Cycles 28:398–414

    CAS  Google Scholar 

  • Cyronak T, Schulz KG, Santos IR, Eyre BD (2014b) Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks. Geophys Res Lett 41:5538–5546

    CAS  Google Scholar 

  • Cyronak T, Andersson AJ, Langdon C, Albright R, Bates NR, Caldeira K, Carlton R, Corredor JE, Dunbar RB, Enochs I, Erez J, Eyre BD, Gattuso J-P, Gledhill D, Kayanne H, Kline DI, Koweek DA, Lantz C, Lazar B, Manzello D, McMahon A, Melendez M, Page HN, Santos IR, Schulz KG, Shaw E, Silverman J, Suzuki A, Teneva L, Watanabe A, Yamamoto S (2018) Taking the metabolic pulse of the world’s coral reefs. PLoS ONE 13:e0190872

    PubMed  PubMed Central  Google Scholar 

  • Cyronak T, Takeshita Y, Courtney TA, DeCarlo EH, Eyre BD, Kline DI, Martz T, Page H, Price NN, Smith J, Stoltenberg L, Tresguerres M, Andersson AJ (2020) Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol Oceanogr Lett 5:193–203

    Google Scholar 

  • Davis KL, McMahon A, Kelaher B, Shaw E, Santos IR (2019) Fifty years of sporadic coral reef calcification estimates at One Tree Island, Great Barrier Reef: Is it enough to imply long term trends? Front Mar Sci 6:282

    Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88(243):251

    Google Scholar 

  • Depczynski M, Bellwood DR (2004) Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar Biol 145:455–463

    Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15. J Chem Thermodyn 22:113–127

    CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743

    CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Publ 3:191

    Google Scholar 

  • Dlugokencky E, Tans P (2020) Trends in Atmospheric Carbon Dioxide. www.esrl.noaa.gov/gmd/ccgg/trends/

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean Acidification: The Other CO2 Problem. Ann Rev Mar Sci 1:169–192

    PubMed  Google Scholar 

  • Drupp PS, De Carlo EH, Mackenzie FT, Sabine CL, Feely RA, Shamberger KE (2013) Comparison of CO2 dynamics and air-sea gas exchange in differing tropical reef environments. Aquat Geochemistry 19:371–397

    CAS  Google Scholar 

  • Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A, Ramajo L, Carstensen J, Trotter JA, McCulloch M (2013) Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36:221–236

    CAS  Google Scholar 

  • Dufault AM, Cumbo VR, Fan T-Y, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proc R Soc B Biol Sci 279:2951–2958

    CAS  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    CAS  PubMed  Google Scholar 

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4:969–976

    CAS  Google Scholar 

  • Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: Effects of metabolism, wave forcing, sea level, and geomorphology. PLoS ONE 8:e53303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankignoulle M, Gattuso JP, Biondo R, Bourge I, Copin-Montégut G, Pichon M (1996) Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132

    Google Scholar 

  • Frith CA, Leis JM, Goldman B (1986) Currents in the Lizard Island region of the Great Barrier Reef Lagoon and their relevance to potential movements of larvae. Coral Reefs 5:81–92

    Google Scholar 

  • Gagliano M, McCormick MI, Moore JA, Depczynski M (2010) The basics of acidification: baseline variability of pH on Australian coral reefs. Mar Biol 157:1849–1856

    CAS  Google Scholar 

  • Gallego MA, Timmermann A, Friedrich T, Zeebe RE (2018) Drivers of future seasonal cycle changes of oceanic pCO2. Biogeosciences 15:5315–5327

    CAS  Google Scholar 

  • Gattuso J, Frankignoulle M (1998) Carbonate chemistry in Bora Bay (Miyako Island, Japan) and carbon cycling in Okinawan reefs. Proceedings of the International Workshop on CO2 cycling and Metabolism in coral reefs 1–8

  • Gattuso J, Payri CE, Pichon M, Delesalle B, Frankignoulle M (1997) Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). J Phycol 33:729–738

    Google Scholar 

  • Gattuso J, Frankignoulle M, Smith SV (1999) Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. PNAS 96:13017–13022

    CAS  PubMed  Google Scholar 

  • Gray SEC, Degrandpre MD, Langdon C, Corredor JE (2012) Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Global Biogeochem Cycles 26:GB3012

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer, Stanford, California

    Google Scholar 

  • IPCC (2019) Summary for Policymakers. Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In press, pp 42

  • Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, de Crook E, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6:e28983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrold MD, Munday PL (2018) Diel CO2 cycles do not modify juvenile growth, survival and otolith development in two coral reef fish under ocean acidification. Mar Biol 165:49

    Google Scholar 

  • Jarrold MD, Munday PL (2019) Diel CO2 cycles and parental effects have similar benefits to growth of a coral reef fish under ocean acidification. Biol Lett 15:20180724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrold MD, Humphrey C, McCormick MI, Munday PL (2017) Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci Rep 7:10153

    PubMed  PubMed Central  Google Scholar 

  • Jiang L, Guo YJ, Zhang F, Zhang YY, McCook LJ, Yuan XC, Lei XM, Zhou GW, Guo ML, Cai L, Lian JS, Qian PY, Huang H (2019) Diurnally fluctuating pCO2 modifies the physiological responses of coral recruits under ocean acidification. Front Physiol 9:1952

    PubMed  PubMed Central  Google Scholar 

  • Johansen JL (2014) Quantifying water flow within aquatic ecosystems using load cell sensors: A profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef. Australia PLoS One 9:e83240

    PubMed  Google Scholar 

  • Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water. Science 269:214–216

    CAS  PubMed  Google Scholar 

  • Kayanne H, Hata H, Kudo S, Yamano H, Watanabe A, Ikeda Y, Nozaki K, Kato K, Negishi A, Saito H (2005) Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Global Biogeochem Cycles 19:GB3015

    Google Scholar 

  • Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98

    Google Scholar 

  • Kline DI, Teneva L, Hauri C, Schneider K, Miard T, Chai A, Marker M, Dunbar R, Caldeira K, Lazar B, Rivlin T, Mitchell BG, Dove S, Hoegh-Guldberg O (2015) Six month in situ high-resolution carbonate chemistry and temperature study on a coral reef flat reveals asynchronous pH and temperature anomalies. PLoS ONE 10:e0127648

    PubMed  PubMed Central  Google Scholar 

  • Komyakova V, Munday PL, Jones GP (2019) Comparative analysis of habitat use and ontogenetic habitat-shifts among coral reef damselfishes. Environ Biol Fishes 102:1201–1218

    Google Scholar 

  • Lantz CA, Atkinson MJ, Winn CW, Kahng SE (2014) Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs 33:105–115

    Google Scholar 

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations, in: Carbon Dioxide Information Analysis Center.

  • Long MH, Berg P, de Beer D, Zieman JC (2013) In situ coral reef oxygen metabolism: an eddy correlation study. PLoS ONE 8:e58581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longhini CM, Souza MFL, Silva AM (2015) Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil. Estuar Coast Shelf Sci 166:13–23

    CAS  Google Scholar 

  • Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) A numerical study of circulation in a coastal reef-lagoon system. J Geophys Res Ocean 114:C06022

    Google Scholar 

  • McElhany P, Busch DS (2013) Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 160:1807–1812

    CAS  Google Scholar 

  • McMahon A, Santos IR, Cyronak T, Eyre BD (2013) Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophys Res Lett 40:4675–4679

    CAS  Google Scholar 

  • McMahon A, Santos IR, Schulz KG, Scott A, Silverman J, Davis KL, Maher DT (2019) Coral reef calcification and production after the 2016 bleaching event at Lizard Island, Great Barrier Reef. J Geophys Res Ocean 124:4003–4016

    CAS  Google Scholar 

  • McNeil BI, Matsumoto K (2019) The changing ocean and freshwater CO2 system. Elsevier Inc., Amsterdam

    Google Scholar 

  • McNeil BI, Sasse TP (2016) Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 529:383–386

    CAS  PubMed  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater At Atmospheric Pressure. Limnol Oceanogr 18:897–907

    CAS  Google Scholar 

  • Miller CA, Pocock K, Evans W, Kelley AL (2018) An evaluation of the performance of Sea-Bird Scientific’s SeaFETTM autonomous pH sensor: considerations for the broader oceanographic community. Ocean Sci 14:751–768

    CAS  Google Scholar 

  • Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576

    Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing.

  • Ravaglioli C, Bulleri F, Rühl S, Mccoy SJ, Findlay HS, Widdicombe S, Queirós AM (2019) Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments. Glob Chang 00:1–14

    Google Scholar 

  • Ridgeway G (2007) Generalized Boosted Models: A guide to the gbm package. https://cran.r-project.org/Web/Packages/Gbm/Gmb/Pdf

  • Sabine CL, Feely RA, Gruber N, Key R, Lee K, Bullister J, Wanninkhof R, Wong C, Wallace D, Tillbrook B, Millaero F, Peng T-H, Kozyr A, Ono T, Rios A (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    CAS  PubMed  Google Scholar 

  • Schmalz RF, Swanson FJ (1969) Diurnal variations in the carbonate saturation of seawater. J Sediment Petrol 39:255–267

    CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res 117:C03038

    Google Scholar 

  • Shaw EC, Mcneil BI, Tilbrook B, Matear R, Bates ML (2013) Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions. Glob Chang Biol 19:1632–1641

    PubMed  Google Scholar 

  • Shaw EC, Phinn SR, Tilbrook B, Steven A (2015) Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol Oceanogr 60:777–788

    CAS  Google Scholar 

  • Silverman J, Kline DI, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K (2012) Carbon turnover rates in the One Tree Island reef: A 40-year perspective. J Geophys Res Biogeosciences 117:G03023

    Google Scholar 

  • Silverman J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K (2014) Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochim Cosmochim Acta 144:72–81

    CAS  Google Scholar 

  • Suzuki A, Kawahata H (2004) Reef water CO2 system and carbon production of coral reefs: Topographic control of system-level performance. Glob Environ Chang Ocean L 229–248

  • Taebi S, Lowe RJ, Pattiaratchi CB, Ivey GN, Symonds G, Brinkman R (2011) Nearshore circulation in a tropical fringing reef system. J Geophys Res Ocean 116:C02016

    Google Scholar 

  • Wahl M, Saderne V, Sawall Y (2015) How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with special emphasis on the neglected role of fluctuations. Mar Freshw Res 67:25–36

    Google Scholar 

  • Waldbusser GG, Salisbury JE (2014) Ocean Acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann Rev Mar Sci 6:221–247

    PubMed  Google Scholar 

  • Ware JR, Smith SV, Reaka-kudla ML (1991) Coral reefs: sources or sinks of atmospheric CO2. Coral Reefs 11:127–130

    Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. PNAS 105:18848–18853

    CAS  PubMed  Google Scholar 

  • Yan H, Yu K, Shi Q, Tan Y, Zhang H, Zhao M, Li S, Chen T, Huang L, Wang P (2011) Coral reef ecosystems in the South China Sea as a source of atmospheric CO2 in summer. Chinese Sci Bull 56:676–684

    CAS  Google Scholar 

  • Yan H, Yu K, Shi Q, Tan Y, Liu G, Zhao M, Li S, Chen T, Wang Y (2016) Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea. J Geophys Res Ocean 121:998–1008

    CAS  Google Scholar 

  • Yates K, Halley R (2006) CO32- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat. Hawaii Biogeosciences 3:357–369

    CAS  Google Scholar 

  • Yates KK, Dufore C, Smiley N, Jackson C, Halley RB (2007) Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Mar Chem 104:110–124

    CAS  Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Science B. V, Amsterdam, The Netherlands

    Google Scholar 

  • Zhang Z, Falter J, Lowe R, Ivey G (2012) The combined influence of hydrodynamic forcing and calcification on the spatial distribution of alkalinity in a coral reef system. J Geophys Res Ocean 117:C04034

    Google Scholar 

Download references

Acknowledgements

We thank B Wren Patton and Sam Noonan for assistance with fieldwork and maintenance of the instruments and Stephen Boyle for analysing the alkalinity and DIC samples. We also extend special thanks to the staff at the Lizard Island Research Station for their help and support. This project was facilitated by funding from the ARC Centre of Excellence for Coral Reef Studies and the Australian Institute of Marine Science (AIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly D. Hannan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data Availability

The dataset generated and analyzed during the current study is available from the corresponding author on request or via the Tropical Research Data Hub (https://doi.org/10.25903/5eebf8f419abf).

Additional information

Topic Editor Michael Lee Berumen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannan, K.D., Miller, G.M., Watson, SA. et al. Diel pCO2 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef. Coral Reefs 39, 1391–1406 (2020). https://doi.org/10.1007/s00338-020-01973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01973-z

Keywords

Navigation