Skip to main content
Log in

A Model for Vortex Nucleation in the Ginzburg–Landau Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper studies questions related to the dynamic transition between local and global minimizers in the Ginzburg–Landau theory of superconductivity. We derive a heuristic equation governing the dynamics of vortices that are close to the boundary, and of dipoles with small inter-vortex separation. We consider a small random perturbation of this equation and study the asymptotic regime under which vortices nucleate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Clearly , and as in Theorem 2.1 have the property that as \(\varepsilon \rightarrow 0\), both \(h_{\textit{ex}}\rightarrow \infty \) and \(\varepsilon ^s h_{\textit{ex}}\rightarrow 0\) for all \(s > 0\).

References

  • Berestycki, H., Bonnet, A., Chapman, S.J.: A semi-elliptic system arising in the theory of type-II superconductivity. Commun. Appl. Nonlinear Anal. 1(3), 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  • Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and Their Applications, 13. Birkhäuser Boston, Boston (1994)

    MATH  Google Scholar 

  • Chapman, S.J.: Nucleation of vortices in type-II superconductors in increasing magnetic fields. Appl. Math. Lett. 10(2), 29–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chugreeva, O., Melcher, C.: Vortices in a stochastic parabolic Ginzburg–Landau equation. ArXiv e-prints, (Jan. 2016), 1601.01926

  • Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.10 of 2015-08-07. Online companion to Olver et al. (2010)

  • Du, Q.: Global existence and uniqueness of solutions of the time-dependent Ginzburg–Landau model for superconductivity. Appl. Anal. 53(1–2), 1–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, Q.: Numerical approximations of the Ginzburg–Landau models for superconductivity. J. Math. Phys. 46(9), 095109, 22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Freidlin, M.I., Wentzell, A.D.: Diffusion processes on graphs and the averaging principle. Ann. Probab. 21(4), 2215–2245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Gor’kov, L.P., Éliashberg, G.M.: Minute metallic particles in an electromagnetic field. Sov. J. Exp. Theor. Phys. 21, 940 (1965)

    Google Scholar 

  • Jerrard, R.L., Soner, H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differ. Equ. 14(2), 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kifer, Y.: Random Perturbations of Dynamical Systems. Progress in Probability and Statistics. Birkhäuser Boston, Boston (1988)

    Book  MATH  Google Scholar 

  • Lin, F.-H., Du, Q.: Ginzburg–Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28(6), 1265–1293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Universitext. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). Print companion to NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/

  • Pontryagin, L.S., Andronov, A.A., Vitt, A.A.: On statistical considerations of dynamical systems. J. Exp. Theor. Phys. 33, 165–180 (1933)

    Google Scholar 

  • Sandier, E., Serfaty, S.: Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 119–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Serfaty, S.: Local minimizers for the Ginzburg–Landau energy near critical magnetic field. I. Commun. Contemp. Math. 1(2), 213–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Serfaty, S.: Stable configurations in superconductivity: uniqueness, multiplicity, and vortex-nucleation. Arch. Ration. Mech. Anal. 149(4), 329–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Serfaty, S.: Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. I. Study of the perturbed Ginzburg-Landau equation. J. Eur. Math. Soc. (JEMS) 9(2), 177–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Serfaty, S.: Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. II. The dynamics. J. Eur. Math. Soc. (JEMS) 9(3), 383–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Spirn, D.: Vortex dynamics of the full time-dependent Ginzburg–Landau equations. Commun. Pure Appl. Math. 55(5), 537–581 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for many helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Iyer.

Additional information

Communicated by Robert V. Kohn.

This material is based upon work partially supported by the National Science Foundation (through Grants DMS-1252912 to GI, and DMS-0955687, DMS-1516565 to DS), the Simons Foundation (through Grant #393685 to GI), the Center for Nonlinear Analysis (through Grant NSF OISE-0967140), and the Institute for Mathematics and Applications (IMA).

Appendix: Annihilation Times of the Heuristic ODE

Appendix: Annihilation Times of the Heuristic ODE

We devote this appendix to proving Proposition 2.2, estimating the annihilation times of the heuristic equation (2.1). A direct calculation shows that when \(\lambda > 0\) the solution to (2.1) is given by

for some constant C. Here \(W_0\) is the principal branch of the Lambert W function. We recall (see Corless et al. (1996), or Section 4.13 in Olver et al. (2010)) that \(W_0\) is defined by the functional relation

$$\begin{aligned} W_0(z e^{z}) = z \end{aligned}$$

when \(z \geqslant -1\).

Using the initial data \(a_\varepsilon (0) = \varepsilon ^\alpha \), we find

Annihilation occurs when \(W_0 = -1\) which is precisely when

Substituting C above gives

and hence

Since by assumption, dividing both sides by , Eq. (2.5) follows.

It remains to prove (2.5) when \(\lambda = 0\). In this case, the exact solution to (2.1) is given by

and hence

(5.8)

for any \(\varepsilon > 0\). This concludes the proof of Proposition 2.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, G., Spirn, D. A Model for Vortex Nucleation in the Ginzburg–Landau Equations. J Nonlinear Sci 27, 1933–1956 (2017). https://doi.org/10.1007/s00332-017-9391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9391-4

Mathematics Subject Classification

Navigation