Skip to main content

Advertisement

Log in

Tumour volume doubling time of molecular breast cancer subtypes assessed by serial breast ultrasound

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of our study was to evaluate the tumour volume doubling time (TVDT) of molecular breast cancer subtypes by serial ultrasound (US).

Methods

Sixty-six patients (mean age, 50 years; range, 29–78 years) with invasive breast cancer underwent initial and follow-up breast US examinations (at least three months apart) with no intervention. TVDT was determined using the tumours’ greatest dimensions in two orthogonal planes. The results were compared with clinical, imaging, and tumour variables and molecular subtypes (oestrogen receptor [ER]-positive, human epidermal growth factor receptor 2 [HER2]-positive, and triple negative) using a multiple linear regression analysis.

Results

TVDT exhibited a wide range (46–825 days; median, 141 days) with an overall mean of 193 ± 141 days and mean values of 241 ± 166 days for ER-positive tumours (n = 37), 162 ± 60 days for HER2-positive tumours (n = 12), and 103 ± 43 days for triple-negative tumours (n = 17) (P < 0.0001). In a multivariate regression analysis, compared to other features, only the different molecular breast cancer subtypes showed significant difference in TVDT (P < 0.0001).

Conclusions

TVDT differed significantly among the three molecular breast cancer subtypes, with the triple-negative tumours showing the fastest growth.

Key Points

• Knowledge of tumour volume doubling time provides clues for improving screening.

• TVDT assessed by serial US differed significantly between breast cancer subtypes.

• Triple-negative tumours had 2.4-fold shorter TVDT compared to ER-positive tumours.

• Tumours classified as BI-RADS 3 had shorter TVDT than BI-RADS 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TVDT :

Tumour volume doubling time

ER :

oestrogen receptor

PR :

progesterone receptor

HER2 :

human epidermal growth factor receptor 2

IHC :

immunohistochemistry

BI-RADS :

Breast Imaging Reporting and Data System

References

  1. Friberg S, Mattson S (1997) On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol 65:284–297

    Article  CAS  PubMed  Google Scholar 

  2. Peer PG, van Dijck JA, Hendriks JH, Holland R, Verbeek AL (1993) Age-dependent growth rate of primary breast cancer. Cancer 71:3547–3551

    Article  CAS  PubMed  Google Scholar 

  3. von Fournier D, Weber E, Hoeffken W, Bauer M, Kubli F, Barth V (1980) Growth rate of 147 mammary carcinomas. Cancer 45:2198–2207

    Article  Google Scholar 

  4. Robertson JF, Caseldine J, Winfield S (1987) Breast mammography and tumour volume. Br J Cancer 56:902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Millet I, Bouic-Pages E, Hoa D, Azria D, Taourel P (2011) Growth of breast cancer recurrences assessed by consecutive MRI. BMC Cancer 11:155

    Article  PubMed Central  PubMed  Google Scholar 

  6. Madeleine MA, Tilanus-Linthorst MM, Obdeijn IM et al (2007) BRCA1 mutation and young age predict fast breast cancer growth in the Dutch, United Kingdom, and Canadian magnetic resonance imaging screening trials. Clin Cancer Res 13:7357–7362

    Article  Google Scholar 

  7. Bosch AM, Kessels AG, Beets GL et al (2003) Preoperative estimation of the pathological breast tumour size by physical examination, mammography and ultrasound: a prospective study on 105 invasive tumours. Eur J Radiol 48:285–292

    Article  PubMed  Google Scholar 

  8. Moon HJ, Kim EK, Kwak JY, Yoon JH, Kim MJ (2011) Interval growth of probably benign breast lesions on follow-up ultrasound: how can these be managed? Eur Radiol 21:908–918

    Article  PubMed  Google Scholar 

  9. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  CAS  PubMed  Google Scholar 

  11. Lin NU, Vanderplas A, Hughes ME et al (2012) Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118:5463–5472

    Article  PubMed Central  PubMed  Google Scholar 

  12. de Ronde JJ, Hannemann J, Halfwerk H et al (2010) Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat 119:119–126

    Article  PubMed  Google Scholar 

  13. Dawson SJ, Duffy SW, Blows FM et al (2009) Molecular characteristics of screen-detected vs symptomatic breast cancers and their impact on survival. Br J Cancer 101:1338–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dogan BE, Gonzalez-Angulo AM, Gilcrease M, Dryden MJ, Yang WT (2010) Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. AJR Am J Roentgenol 194:1160–1166

    Article  PubMed  Google Scholar 

  15. Ko ES, Lee BH, Kim HA, Noh WC, Kim MS, Lee SA (2010) Triple-negative breast cancer: correlation between imaging and pathological findings. Eur Radiol 20:1111–1117

    Article  PubMed  Google Scholar 

  16. Boisserie-Lacroix M, Macgrogan G, Debled M et al (2013) Triple-negative breast cancers: associations between imaging and pathological findings for triple-negative tumors compared with hormone receptor-positive/human epidermal growth factor receptor-2-negative breast cancers. Oncologist 18:802–811

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mendelson EB, Baum JK, Berg WA, Merritt CRB, Rubin E (2003) Breast Imaging Reporting and Data System, BI-RADS: Ultrasound, 1st edn. American College of Radiology, Reston

    Google Scholar 

  18. Tilanus-Linthorst MM, Kriege M, Boetes C et al (2005) Hereditary breast cancer growth rates and its impact on screening policy. Eur J Cancer 41:1610–1617

    Article  PubMed  Google Scholar 

  19. Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S (2010) American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6:195–197

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  CAS  PubMed  Google Scholar 

  21. Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  23. Turkoz FP, Solak M, Petekkaya I et al (2013) Association between common risk factors and molecular subtypes in breast cancer patients. Breast 22:344–350

    Article  PubMed  Google Scholar 

  24. Eklund M, Esserman LJ (2013) Screening: biology dictates the fate of young women with breast cancer. Nat Rev Clin Oncol 10:673–675

    Article  PubMed  Google Scholar 

  25. de Melo Gagliato D, Gonzalez-Angulo AM, Lei X et al (2014) Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J Clin Oncol(Jan 27)

  26. Park S, Koo JS, Kim MS et al (2012) Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 21:50–57

    Article  PubMed  Google Scholar 

  27. Lee JA, Kim KI, Bae JW et al (2010) Triple negative breast cancer in Korea-distinct biology with different impact of prognostic factors on survival. Breast Cancer Res Treat 123:177–178

    Article  PubMed  Google Scholar 

  28. Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res 48(24 Pt 1):7067–7071

    CAS  PubMed  Google Scholar 

  29. Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G (1994) Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst 86:45–48

    Article  CAS  PubMed  Google Scholar 

  30. Stavros AT (2003) Breast ultrasound. Lippincott Williams & Wilkins, Philadelphia, PA, pp 490–491

    Google Scholar 

  31. Berg WA, Cosgrove DO, Doré CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262:435–449

    Article  PubMed  Google Scholar 

  32. Cho N, Jang M, Lyou CY, Park JS, Choi HY, Moon WK (2012) Distinguishing benign from malignant masses at breast US: combined US elastography and color doppler US–influence on radiologist accuracy. Radiology 262:80–90

    Article  PubMed  Google Scholar 

  33. Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S (2008) Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res 10:R41

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kelly KM, Dean J, Lee SJ, Comulada WS (2010) Breast cancer detection: radiologists’ performance using mammography with and without automated whole-breast ultrasound. Eur Radiol 20:2557–2564

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kuroishi T, Tominaga S, Morimoto T et al (1990) Tumor growth rate and prognosis of breast cancer mainly detected by mass screening. Jpn J Cancer Res 81:454–462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Woo Kyung Moon. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This study has received funding by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A1A01010846). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board. Methodology: retrospective, observational, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Kyung Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, E.B., Chang, J.M., Seo, M. et al. Tumour volume doubling time of molecular breast cancer subtypes assessed by serial breast ultrasound. Eur Radiol 24, 2227–2235 (2014). https://doi.org/10.1007/s00330-014-3256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3256-0

Keywords

Navigation