Skip to main content

Advertisement

Log in

Postmortem imaging of antemortem myocardial ischaemia

  • Forensic Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine the minimum survival time for detection of antemortem myocardial ischaemia with postmortem imaging (PMI) techniques.

Methods

Nine pigs underwent ligation of the left anterior descending (LAD) (8) and/or right coronary artery (RCA) branch (4), and were killed 30 min–6 h after ligation. PMI (MRI and CT angiography) was performed 2–55 h after euthanasia. Signal intensity of myocardial segments was measured. The hearts were removed, the coronary arteries injected to mark perfused segments, and sections submitted for histology.

Results

MRI T2-weighted sequences showed the ischaemic area as hyperintense in 4/4 LAD ligations with ≥4 h of ischaemia but in 0/4 with <4 h. Histological evidence of ischaemia was present in 4/4 animals after 4 h. Right ventricular ischaemic myocardium was visible on MRI T2-weighted sequences after 6 h of ischaemia in one animal. CT angiography showed the occluded coronary artery in all cases.

Conclusions

Ischaemic lesions of the left ventricle, but not of the right, at least 4 h old can be detected as hyperintense areas on T2-weighted postmortem MRI. This technique is most sensitive in the first 24 h after death. Other sequences did not enhance detection.

Key Points

• Left ventricular myocardial ischaemia/infarction can be demonstrated by postmortem imaging (PMI).

• Ischaemia/infarction is better detected if survival time is at least 4 h.

• Right ventricular ischaemia/infarction is not reliably detected by PMI.

• Computed tomography angiography can demonstrate arterial occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LAD:

left anterior descending coronary artery

MDCT:

multi-detector computed tomography

MgSO4:

magnesium sulphate

MRI:

magnetic resonance imaging

PMI:

postmortem imaging

PRV:

preventricular branch of the right coronary artery

RCA:

right coronary artery

References

  1. Roberts IS, Benamore RE, Benbow EW et al (2012) Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379:136–142

    Article  PubMed Central  PubMed  Google Scholar 

  2. Dirnhofer R, Jackowski C, Vock P et al (2006) Virtopsy: minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333

    Article  PubMed  Google Scholar 

  3. Thali MJ, Jackowski C, Oesterhelweg L et al (2007) Virtopsy – The Swiss virtual autopsy approach. Legal Med 9:100–104

    Article  PubMed  Google Scholar 

  4. Bisset RA, Thomas NB, Turnbull IW et al (2002) Postmortem examinations using magnetic resonance imaging: four year review of a working service. BMJ 324:1423–1424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Levy AD, Abbott RM, Mallak CT et al (2006) Virtual autopsy: preliminary experience in high-velocity gunshot wound victims. Radiology 240:522–528

    Article  PubMed  Google Scholar 

  6. Hoey BA, Cipolla J, Grossman MD et al (2007) Postmortem computed tomography, “CATopsy”, predicts cause of death in trauma patients. J Trauma 63:979–985

    Article  PubMed  Google Scholar 

  7. Weustink AC, Hunink MG, van Dijke CF et al (2009) Minimally invasive autopsy: an alternative to conventional autopsy? Radiology 250:897–904

    Article  PubMed  Google Scholar 

  8. Loughrey MB, McCluggage WG, Toner PG (2000) The declining autopsy rate and clinicians’ attitudes. Ulst Med J 69:83–89

    CAS  Google Scholar 

  9. Shojania KG, Burton EC (2008) The vanishing nonforensic autopsy. N Engl J Med 358:873–875

    Article  CAS  PubMed  Google Scholar 

  10. Thayyil S (2011) Less invasive autopsy: an evidenced based approach. Arch Dis Child 96:681–687

    Article  PubMed  Google Scholar 

  11. Jackowski C, Schweitzer W, Thali M et al (2005) Virtopsy: postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci Int 149:11–23

    Article  PubMed  Google Scholar 

  12. Jachau K, Heinrichs T, Kuchheuser W et al (2004) Computed tomography and magnetic resonance imaging compared to pathoanatomic findings in isolated human autopsy hearts. Rechtsmedizin 14:109–116

    Article  Google Scholar 

  13. Jackowski C, Christe A, Sonnenschein M et al (2006) Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization. Eur Heart J 27:2459–2467

    Article  PubMed  Google Scholar 

  14. Jackowski C, Warntjes MJ, Berge J et al (2011) Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI. Eur Radiol 21:70–78

    Article  PubMed  Google Scholar 

  15. Kaliszan M, Hauser R, Kaliszan R et al (2005) Verification of the exponential model of body temperature decrease after death in pigs. Exp Physiol 90:727–738

    Article  PubMed  Google Scholar 

  16. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  17. van den Bosch AE, Meijboom FJ, McGhie JS et al (2004) Enhanced visualisation of the right ventricle by contrast echocardiography in congenital heart disease. Eur J Echocardiogr 5:104–110

    Article  PubMed  Google Scholar 

  18. Reig J, Petit M (2001) Perfusion of myocardial segments of the right ventricle: role of the left coronary artery in infarction of the right ventricle. Clin Anat 14:142–148

    Article  CAS  PubMed  Google Scholar 

  19. Kalbfleisch H, Hort W (1977) Quantitative study on the size of coronary artery supplying areas postmortem. Am Heart J 94:183–188

    Article  CAS  PubMed  Google Scholar 

  20. Johnston DL, Brady TJ, Ratner AV et al (1985) Assessment of myocardial ischemia with proton magnetic resonance: effects of a three hour coronary occlusion with and without reperfusion. Circulation 71:595–601

    Article  CAS  PubMed  Google Scholar 

  21. McNamara MT, Tscholakoff D, Revel D et al (1986) Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 158:765–769

    CAS  PubMed  Google Scholar 

  22. Abdel-Aty H, Cocker M, Meek C et al (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53:1194–1201

    Article  CAS  PubMed  Google Scholar 

  23. Barroihet LE, Moran PR (1976) NMR relaxation behavior in living and ischemically damaged tissue. Med Phys 3:410–414

    Article  CAS  PubMed  Google Scholar 

  24. Polak JF, Jolesz FA, Adams DF (1988) NMR of skeletal muscle. Differences in relaxation parameters related to extracellular/intracellular fluid spaces. Investig Radiol 23:107–112

    Article  CAS  Google Scholar 

  25. Scholz TD, Martins JB, Skorton DJ (1992) NMR relaxation times in acute myocardial infarction: relative influence of changes in tissue water and fat content. Magn Reson Med 23:89–95

    Article  CAS  PubMed  Google Scholar 

  26. Tscholakoff D, Higgins CB, McNamara MT et al (1986) Early-phase myocardial infarction: evaluation by MR imaging. Radiology 159:667–672

    CAS  PubMed  Google Scholar 

  27. McNamara MT, Higgins CB, Schechtmann N et al (1985) Detection and characterization of acute myocardial infarction in man with use of gated magnetic resonance. Circulation 71:717–724

    Article  CAS  PubMed  Google Scholar 

  28. White FC, Roth DM, Bloor CM (1986) The pig as a model for myocardial ischemia and exercise. Lab Anim Sci 36:351–356

    CAS  PubMed  Google Scholar 

  29. Unger EF (2001) Experimental evaluation of coronary collateral development. Cardiovasc Res 49:497–506

    Article  CAS  PubMed  Google Scholar 

  30. Ruder TD, Hatch GM, Siegenthaler L et al (2012) The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol 81:1366–1370

    Article  PubMed  Google Scholar 

  31. Kobayashi T, Isobe T, Shiotani S et al (2010) Postmortem magnetic resonance imaging dealing with low temperature objects. Magn Reson Med Sci 9:101–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded in part by an Innovestment grant from Boston Children’s Hospital. We thank the ARCH team for their support and assistance with animal care and surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Sanders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pluchinotta, F.R., Porayette, P., Myers, P.O. et al. Postmortem imaging of antemortem myocardial ischaemia. Eur Radiol 24, 34–41 (2014). https://doi.org/10.1007/s00330-013-2974-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2974-z

Keywords

Navigation