Skip to main content
Log in

The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Antarctic mite (Alaskozetes antarcticus) is widely distributed on sub-Antarctic islands and throughout the Antarctic Peninsula, making it one of the most abundant terrestrial arthropods in the region. Despite the impressive ability of A. antarcticus to thrive in harsh Antarctic conditions, little is known about the biology of this species. In this study, we performed 16S rRNA gene sequencing to examine the microbiome of the final immature instar (tritonymph) and both male and female adults. The microbiome included a limited number of microbial classes and genera, with few differences in community membership noted among the different stages. However, the abundances of taxa that composed the microbial community differed between adults and tritonymphs. Five classes—Actinobacteria, Flavobacteriia, Sphingobacteriia, Gammaproteobacteria, and Betaproteobacteria—comprised ~ 82.0% of the microbial composition, and five (identified) genera—Dermacoccus, Pedobacter, Chryseobacterium, Pseudomonas, and Flavobacterium—accounted for ~ 68.0% of the total composition. The core microbiome present in all surveyed A. antarcticus was dominated by the families Flavobacteriaceae, Comamonadaceae, Sphingobacteriaceae, Chitinophagaceae and Cytophagaceae, but the majority of the core consisted of operational taxonomic units of low abundance. This comprehensive analysis reveals a diverse microbiome among individuals of different stages, with overlap likely due to their shared habitat and common feeding preferences as herbivores and detritivores. The microbiome of the Antarctic mite shows considerably more diversity than observed in mite species from lower latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton M, Clements D, Coraor N, Grüning B, Guerler A, Hillman-Jackson J, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aislabie J, Jordan S, Barker G (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137

    Article  Google Scholar 

  • Bahrndorff S, de Jonge N, Hansen JK, Lauritzen JMS, Spanggaard LH, Sørensen MH, Yde M, Nielsen JL (2018) Diversity and metabolic potential of the microbiota associated with a soil arthropod. Sci Rep 8:2491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2008) Adaptations for the maintenance of water balance by three species of Antarctic mites. Polar Biol 31:539–547

    Article  Google Scholar 

  • Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Evolut Microbiol 46:128–148

    Google Scholar 

  • Block W, Convey P (1995) The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. J Zool 236:431–449

    Article  Google Scholar 

  • Bokhorst S, Convey P (2016) Impact of marine vertebrates on Antarctic terrestrial micro-arthropods. Antarct Sci 28:175–186

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Chan TF, Ji KM, Yim AKY, Liu XY, Zhou JW, Li RQ, Yang KY, Li J, Li M, Law PTW (2015) The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol 135:539–548

    Article  CAS  PubMed  Google Scholar 

  • Chen B (2018) VennDiagram: generate high-resolution Venn and Euler plots. R package version 1.6.20

  • Convey P (1994a) Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17:97–107

    Article  Google Scholar 

  • Convey P (1994b) Sex ratio, oviposition and early development of the Antarctic oribatid mite Alaskozetes antarcticus (Acari: Cryptostigmata) with observations on other oribatids. Pedobiologia 2:161–168

    Google Scholar 

  • De Meillon B, Golberg L (1946) Preliminary studies on the nutritional requirements of the bed bug (Cimex lectularius L.) and the tick Ornithodorus moubata Murray. J Exp Biol 24:41–63

    Google Scholar 

  • Díaz S, Villavicencio B, Correia N, Costa J, Haag KL (2016) Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasites Vectors 9:636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dragulescu A (2014) xlsx: read, write, formal Excel 2007 and Excel 97/2000/xp/2003 files. R package version 04 2

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erban T, Ledvinka O, Nesvorna M, Hubert J (2017) Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae. Appl Environ Microbiol 83:e00128–e217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everatt M, Convey P, Worland M, Bale J, Hayward S (2013) Heat tolerance and physiological plasticity in the Antarctic collembolan, Cryptopygus antarcticus, and mite, Alaskozetes antarcticus. J Therm Biol 38:264–271

    Article  Google Scholar 

  • Fagen JR, Giongo A, Brown CT, Davis-Richardson AG, Gano KA, Triplett EW (2012) Characterization of the relative abundance of the citrus pathogen Ca. Liberibacter asiaticus in the microbiome of its insect vector, Diaphorina citri, using high throughput 16S rRNA sequencing. Open Microbiol J 6:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox J, Weisberg S (2011) Car: companion to applied regression. https://www.CRAN. R-project org/package= car

  • Fuka MM, Wallisch S, Engel M, Welzl G, Havranek J et al (2013) Dynamics of bacterial communities during the ripening process of different croatian cheese types derived from raw Ewe's milk cheeses. PLoS ONE 8:e80734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong X, Chen TW, Zieger SL, Bluhm C, Heidemann K, Schaefer I, Maraun M, Liu M, Scheu S (2018) Phylogenetic and trophic determinants of gut microbiota in soil oribatid mites. Soil Biol Biochem 123:155–164

    Article  CAS  Google Scholar 

  • Graves S, Piepho HP, Selzer, ML (2015) Package ‘multcompView’

  • Greer C, Whyte L, Niederberger T (2010) Microbial communities in hydrocarbon-contaminated temperate, tropical, alpine, and polar soils. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2313–2328

    Chapter  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci 106:4742–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera LM, García-Laviña CX, Marizcurrena JJ, Volonterio O, de León RP, Castro-Sowinski S (2017) Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biol 40:947–953

    Article  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  CAS  PubMed  Google Scholar 

  • Hope R (2013) Rmisc: Ryan miscellaneous. R package version 1.

  • Hubert J, Kopecky J, Sagova-Mareckova M, Nesvorna M, Zurek L, Erban T (2016) Assessment of bacterial communities in thirteen species of laboratory-cultured domestic mites (Acari: Acaridida). J Econ Entomol 109:1887–1896

    Article  CAS  PubMed  Google Scholar 

  • Hubert J, Erban T, Kopecky J, Sopko B, Nesvorna M, Lichovnikova M, Schicht S, Strube C, Sparagano O (2017) Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like bacteria. Microb Ecol 74:947–960

    Article  PubMed  Google Scholar 

  • Hubert J, Nesvorna M, Sopko B, Smrz J, Klimov P, Erban T (2018) Two populations of mites (Tyrophagus putrescentiae) differ in response to feeding on feces-containing diets. Front Microbiol 9:2590

    Article  PubMed  PubMed Central  Google Scholar 

  • Joern A, Behmer ST (1997) Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae). Oecologia 112:201–208

    Article  PubMed  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33

    Article  Google Scholar 

  • López-García A, Pineda-Quiroga C, Atxaerandio R, Pérez A, Hernández I, García-Rodríguez A, González-Recio O (2018) Comparison of mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences. Front Microbiol 9:1–11

    Article  Google Scholar 

  • Mangiafico S (2015) An R companion for the handbook of biological statistics, version 1.09 i.

  • Moquin S, Garcia J, Brantley S, Takacs-Vesbach C, Shepherd U (2012) Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ 87:110–117

    Article  Google Scholar 

  • Narasimhan S, Fikrig E (2015) Tick microbiome: the force within. Trends Parasitol 31:315–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen UN, Osler GH, Campbell CD, Burslem DF, van der Wal R (2012) Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia 55:83–91

    Article  Google Scholar 

  • Ondov BD, Berqman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinform 12:385

    Article  Google Scholar 

  • Pakwan C, Kaltenpoth M, Weiss B, Chantawannakul P, Jun G, Disayathanoowat T (2017) Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of the honey bee (Apis mellifera). FEMS Microbiol Ecol 93:160

    Google Scholar 

  • Pathom-Aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from challenger deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  PubMed  Google Scholar 

  • Pekas A, Palevsky E, Sumner JC, Perotti MA, Nesvorna M, Hubert J (2017) Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae). Sci Rep 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radwan S (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf region. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 275–298

    Chapter  Google Scholar 

  • Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruckmani A, Kaur I, Schumann P, Klenk HP, Mayilraj S (2011) Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the family Dermacoccaceae. Int J Syst Evol Microbiol 61:2419–2424

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler CG, Havig JR, Hamilton TL (2017) Hot spring microbial community composition, morphology, and carbon fixation: implications for interpreting the ancient rock record. Front Earth Sci 5:97

    Article  Google Scholar 

  • Shimada K, Pan C, Ohyama Y (1992) Variation in summer cold-hardiness of the Antarctic oribatid mite Alaskozetes antarcticus from contrasting habitats on King George Island. Polar Biol 12:701–706

    Article  Google Scholar 

  • Stackebrandt E, Schumann P (2014) The family Dermacoccaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 301–315

    Google Scholar 

  • Swei A, Kwan JY (2017) Tick microbiome and pathogen acquisition altered by host blood meal. ISME J 11:813

    Article  PubMed  Google Scholar 

  • Van Borm S, Buschinger A, Boomsma JJ, Billen J (2002) Tetraponera ants have gut symbionts related to nitrogen–fixing root–nodule bacteria. Proc R Soc Lond B 269:2023–2027

    Article  CAS  Google Scholar 

  • Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Wickham H (2007) Reshaping data with the reshape Package. J Stat Softw 21:1–20

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis

  • Wickham H, Francois R, Henry L, Müller K (2017) dplyr: a grammar of data manipulation. R package version 0.7.4

  • Worland MR, Lukešová A (2000) The effect of feeding on specific soil algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biol 23:766–774

    Article  Google Scholar 

  • Yang YW et al (2015) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl Environ Microbiol 81:6749–6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform 17:135

    Article  CAS  Google Scholar 

  • Young S, Block W (1980) Experimental studies on the cold tolerance of Alaskozetes antarcticus. J Insect Physiol 26:189–200

    Article  Google Scholar 

  • Zindel R, Ofek M, Minz D, Palevsky E, Zchori-Fein E, Aebi A (2013) The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). FASEB J 27:1488–1497

    Article  CAS  PubMed  Google Scholar 

  • Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO (2016) Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol 25:4963–4977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (NSF PLR 1341385 and NSF PLR 1341393, with partial support for computing resources in DEB-1654417). This study used the Nephele platform from the National Institute of Allergy and Infectious Diseases (NIAID) Office of Cyber Infrastructure and Computational Biology (OCICB) in Bethesda, MD. We are grateful for the hard work and assistance of the support staff at Palmer Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Holmes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1025 kb)

Supplementary file2 (DOCX 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, C.J., Jennings, E.C., Gantz, J.D. et al. The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs. Polar Biol 42, 2075–2085 (2019). https://doi.org/10.1007/s00300-019-02582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02582-5

Keywords

Navigation