Skip to main content
Log in

Declining health status of Brown Skua (Stercorarius antarcticus lonnbergi) parents and their offspring during chick development

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

During breeding, Brown Skuas (Stercorarius antarcticus lonnbergi) perform a great physical effort in the care and maintenance of the nest. Interestingly, the breeding colony on which this work was conducted is in steady decline in recent years. In order to understand the physiological background responsible for the trade off between reproductive effort and health status, in adults and the possible reasons for the colony decline, we evaluated the health status in Brown Skuas parents and growing chicks and blood samples were obtained in three different breeding stages from adults: In (incubation), Er (after egg hatching), and Lr (during chick rearing) and from developing chicks. Serum albumin, α-, β-. and γ-globulin fractions, IgY level and corticosterone were determined in adults, while plasma proteins concentration, electrolytes, and γ-globulins were determined in chicks. Differences in albumin, α-, and γ-globulins and IgY levels were observed in adults through the reproductive stages, indicating a decline in nutritional status and immunocompetence during breeding. In addition, a decline in body condition and immune status was observed in growing chicks, indicating a close relationship between the decrease of the health status and reproductive effort performed by adults and the physiological status of the nestlings during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Angelier F, Shaffer SA, Weimerskirch H, Trouvé C, Chastel O (2007) Corticosterone and foraging behavior in a pelagic seabird. Physiol Biochem Zool 80:283–292

    Article  CAS  PubMed  Google Scholar 

  • Bourgeon S, Raclot T (2006) Corticosterone selectively decreases humoral immunity in female eiders during incubation. J Exp Biol 209:4957–4965

    Article  CAS  PubMed  Google Scholar 

  • Bourgeon S, Le Maho Y, Raclot T (2009) Proximate and ultimate mechanisms underlying immunosuppression during the incubation fast in female eiders: roles of triiodothyronine and corticosterone. Gen Comp Endocrinol 163:77–82

    Article  CAS  PubMed  Google Scholar 

  • Bourgeon S, Kauffmann M, Geiger S, Raclot T, Robin JP (2010) Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive humoral immunities in fasted re-fed mallards. J Exp Biol 213:3810–3818

    Article  CAS  PubMed  Google Scholar 

  • Burton RW (1968) Breeding biology of the Brown Skua Catharacta skua lonnbergi (Mathews), at Signy Island, South Orkney Islands. Br Antarct Surv Bull 15:9–28

    Google Scholar 

  • Chappell MA, Shoemaker VH, Janes DN, Maloney SK, Bucher TL (1993) Energetics of foraging in breeding adélie penguins. Ecology 74:2450–2461

    Article  Google Scholar 

  • Cherel Y, Robin JP, Walch O, Karmann H, Netchitailo P, Le Maho Y (1988) Fasting in king penguins I. Hormonal and metabolic changes during breeding. Am J Physiol 254:170–177

    Google Scholar 

  • Core Team R (2015) R: A language and environment for statistical computing. R foundation for statistical computing, Viena, Autria. http://www.R-project.org/

  • Croxall JP, Rothery P (1991) Population regulation of seabirds: implications of their demography for conservation. In: Perrins CJ, Lebreton JD, Hirons GJM (eds) Bird population studies: relevance to conservation and management. Oxford University Press, Oxford, pp 272–296

    Google Scholar 

  • Deerenberg C, Arpanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond B 264:1021–1029

    Article  Google Scholar 

  • Devillers P (1978) Distribution and relationships of South American Skuas. Éditions du Gerfaut, Paris

    Google Scholar 

  • Ferrer M, Belliure J, Viñuela J, Martin B (2013) Parental physiological condition and reproductive success in chinstrap penguins (Pygoscelis antarctica). Polar Biol 36:529–535

    Article  Google Scholar 

  • Fowler GS (1999) Behavioral and hormonal responses of magellanic penguins to tourism and nest site visitation. Biol Conserv 90:143–149

    Article  Google Scholar 

  • Graña Grilli M (2014) Decline in numbers of Antarctic Skuas breeding at Potter Peninsula, King George Island, Antarctica. Mar Ornithol 42:161–162

    Google Scholar 

  • Graña Grilli M (2015) Uso del espacio, dieta y estado corporal del skua pardo (Stercorarius antarcticus lonnbergi) durante su período reproductivo en Antártida. Doctoral Thesis, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata

  • Graña Grilli M, Montalti D (2015) Variation in diet composition during the breeding cycle of an Antarctic seabird in relation to its breeding chronology and that of its main food resource. Polar Biol 38:643–649

    Article  Google Scholar 

  • Grasman KA, Armstrong M, Hammersley DL, Scanlon PF, Fox GA (2000) Geographic variation in blood plasma protein concentrations of young herring gulls (Larus argentatus) and caspian terns (Sterna caspia) from the Great Lakes and Lake Winnipeg. Comp Biochem Physiol C 125:365–375

    CAS  Google Scholar 

  • Gustafsson L, Sutherland WJ (1988) The costs of reproduction in the collared flycatcher Ficedula albicollis. Nature 335:813–815

    Article  Google Scholar 

  • Gustafsson L, Nordling D, Andersson MS, Sheldon BC, Quarnstrøm A (1994) Infectious disease, reproductive effort and the cost of reproduction in birds. Philos Trans R Soc Lond B 346:323–331

    Article  CAS  Google Scholar 

  • Hahn S, Reinhardt K, Ritz MS, Janicke T, Montalti D, Peter H-U (2007) Oceanographic and climatic factors differentially affect reproduction performance of Antarctic skuas. Mar Ecol Prog Ser 334:287–297

    Article  Google Scholar 

  • Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2005) Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction. Proc R Soc Lond B 272:1039–1046

    Article  Google Scholar 

  • Hector JA, Harvey S (1986) Corticosterone secretion through long incubation shifts in Diomedea albatrosses. Gen Comp Endocrinol 62:349–352

    Article  CAS  PubMed  Google Scholar 

  • Hollmén T, Franson JC, Hario M, Sankari S, Kilpi M, Lindström K (2001) Use of serum biochemistry to evaluate nutritional status and health of incubating common eiders (Somateria mollissima) in Finland. Physiol Biochem Zool 74:333–342

    Article  PubMed  Google Scholar 

  • Hood LC, Boersma PD, Wingfield JC (1998) The adrenocortical response to stress in incubating magellanic penguins (Spheniscus magellanicus). Auk 115:76–84

    Article  Google Scholar 

  • Ibañez AE, Najle R, Larsen K, Montalti D (2015) Hematology, biochemistry and serum protein analyses of Antarctic and non-Antarctic skuas. Waterbirds 38:153–161

    Article  Google Scholar 

  • Kitaysky AS, Wingfield JC, Piatt JF (1999) Dynamics of food availability, body condition and physiological response in breeding black-legged kittiwakes. Funct Ecol 13:577–585

    Article  Google Scholar 

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415

    Article  Google Scholar 

  • Krietsch J, Hahn S, Kopp M, Phillips RA, Peter HU, Lisovski S (2017) Consistent variation in individual migration strategies of Brown Skuas. Mar Ecol Prog Ser. doi:10.3354/meps11932

    Google Scholar 

  • Lormée H, Jouventin P, Trouve C, Chastel O (2003) Sex-specific patterns in baseline corticosterone and body condition changes in breeding red-footed boobies Sula sula. Ibis 145:212–219

    Article  Google Scholar 

  • Lumeij JT (1987) The diagnostic value of plasma proteins and non-protein nitrogen substances in birds. Vet Q 9:262–268

    Article  CAS  PubMed  Google Scholar 

  • Martínez J, Tomás G, Merino S, Arriero E, Moreno J (2003) Detection of serum immunoglobulins in wild birds by direct ELISA: a methodological study to validate the technique in different species using antichicken antibodies. Funct Ecol 17:700–706

    Article  Google Scholar 

  • Moreno J (2003) Lifetime reproductive success in seabirds: interindividual differences and implications for conservation. Sci Mar 67:7–12

    Article  Google Scholar 

  • Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • Nordling D, Andersson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298

    Article  Google Scholar 

  • Phillips R, Catry P, Silk J, Bearhop S, McGill R, Afanasyev V, Strange I (2007) Movements, winter distribution and activity patterns of falkland and Brown Skuas: insights from loggers and isotopes. Mar Ecol Prog Ser 345:281–291

    Article  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effects models. R package version 3.1-120. http://CRAN.R-project.org/package=nlme>

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641

    Article  Google Scholar 

  • Repetto EM, Sanchez R, Cipelli J, Astort F, Martinez Calejman C, Piroli GG, Arias P, Cymeryng CB (2010) Dysregulation of corticosterone secretion in streptozotocin-diabetic rats: modulatory role of the adrenocortical nitrergic system. Endocrinology 151:203–210

    Article  CAS  PubMed  Google Scholar 

  • Ritz M, Millar C, Miller G, Phillips R, Ryan P, Sternkopf V, Liebers-Helbig D, Hans-Ulrich P (2008) Phylogeography of the southern skua complex-rapid colonization of the southern hemisphere during a glacial period and reticulate evolution. Mol Phylogenet Evol 49:292–303

    Article  CAS  PubMed  Google Scholar 

  • Røskaft E (1985) The effect of enlarged brood size on future reproductive potential on the rook. J Anim Ecol 54:255–260

    Article  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Viñuela J, Moreno J, Carrascal LM, Sanz JJ, Ferrer M, Amat JA, Belliure J, Cuervo JJ (1996) The effect of hatching date on parental care, chick growth and chick mortality in the chinstrap penguin Pygoscelis antarctica. J Zool Lond 240:51–58

    Article  Google Scholar 

  • Weimerskirch H (1999) The role of body condition on breeding and foraging decisions in albatrosses and petrels. In: Adams NJ, Slotow RH (eds) Proceedings of 22 international ornithological congress. Durban, Johannesburg, pp 1178–1189

    Google Scholar 

  • Weimerskirch H, Lallemand J, Martin J (2005) Population sex ratio variation in a monogamous long-lived bird, the wandering albatross. J Animal Ecol 74:285–291

    Article  Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the ‘‘emergency life history stage”. Amer Zool 38:191–206

    Article  CAS  Google Scholar 

  • Wingfield JC, Ramos-Fernandez G, Nuñez De La Mora A, Drummond H (1999) The effects of an ‘El Niño’ southern oscillation event on reproduction in male and female Bluefooted Boobies, Sula nebouxii. Gen Comp Endocrinol 114:163–172

    Article  CAS  PubMed  Google Scholar 

  • Zuk M (1996) Disease, endocrine-immune interactions and sexual selection. Ecology 77:1037–1042

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible thanks to Instituto Antártico Argentino (IAA), which provided logistical support and permission to carry out the fieldwork at Potter Peninsula. This work was supported by Proyecto de Investigación Plurianual (PIP- CONICET n:0158) and Agencia Nacional de Promoción Científica y Tecnológica and Instituto Antártico Argentino (PICTA-2010-0080) (To Diego Montalti) and partially supported by (PICT-2014-3323) (to AEI). Special thanks to Juan Manuel Girini and Facundo Xavier Palacio for their help with statistical analysis, as well as to the Editor and reviewers for their interesting and helpful critics of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Esteban Ibañez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibañez, A.E., Graña Grilli, M., Figueroa, A. et al. Declining health status of Brown Skua (Stercorarius antarcticus lonnbergi) parents and their offspring during chick development. Polar Biol 41, 193–200 (2018). https://doi.org/10.1007/s00300-017-2181-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2181-5

Keywords

Navigation