Skip to main content

Advertisement

Log in

Spatial distribution patterns of ascidians (Ascidiacea: Tunicata) on the continental shelves off the northern Antarctic Peninsula

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ascidians (Ascidiacea: Tunicata) are sessile suspension feeders that represent dominant epifaunal components of the Southern Ocean shelf benthos and play a significant role in the pelagic–benthic coupling. Here, we report the results of a first study on the relationship between the distribution patterns of eight common and/or abundant (putative) ascidian species, and environmental drivers in the waters off the northern Antarctic Peninsula. During RV Polarstern cruise XXIX/3 (PS81) in January–March 2013, we used seabed imaging surveys along 28 photographic transects of 2 km length each at water depths from 70 to 770 m in three regions (northwestern Weddell Sea, southern Bransfield Strait and southern Drake Passage), differing in their general environmental setting, primarily oceanographic characteristics and sea-ice dynamics, to comparatively analyze the spatial patterns in the abundance of the selected ascidians, reliably to be identified in the photographs, at three nested spatial scales. At a regional (100-km) scale, the ascidian assemblages of the Weddell Sea differed significantly from those of the other two regions, whereas at an intermediate 10-km scale no such differences were detected among habitat types (bank, upper slope, slope, deep/canyon) on the shelf and at the shelf break within each region. These spatial patterns were superimposed by a marked small-scale (10-m) patchiness of ascidian distribution within the 2-km-long transects. Among the environmental variables considered in our study, a combination of water-mass characteristics, sea-ice dynamics (approximated by 5-year averages in sea-ice cover in the region of or surrounding the photographic stations), as well as the seabed ruggedness, was identified as explaining best the distribution patterns of the ascidians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Gorley R, Clarke K (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea-ice biology in the Southern Ocean. Antarct Sci 16:471–486

    Article  Google Scholar 

  • Bakus GJ (1968) Sedimentation and benthic invertebrates of Fanning Island, central Pacific. Mar Geol 6:45–51

    Article  Google Scholar 

  • Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Chang 7:365–368

    Article  Google Scholar 

  • Barnes DK, Griffiths HJ, Kaiser S (2009) Geographic range shift responses to climate change by Antarctic benthos: where we should look. Mar Ecol Prog Ser 393:13–26

    Article  Google Scholar 

  • Bergmann M, Klages M (2012) Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Mar Poll Bull 64:2734–2741

    Article  CAS  Google Scholar 

  • Bolker BM, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153:575–602

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Meth Res 33:261–304

    Article  Google Scholar 

  • Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Butman CA (1987) Larval settlement of soft settlement invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr Mar Biol Annu Rev 25:113–165

    Google Scholar 

  • Cape MR, Vernet M, Kahru M, Spreen G (2014) Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J Geophys Res-Oceans 119:572–594

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke DB, Ackley SF (1984) Sea-ice structure and biological activity in the Antarctic marginal ice zone. J Geophys Res Oceans 89:2087–2095

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, UK

    Google Scholar 

  • Clarke A, Griffiths HJ, Barnes DK, Meredith MP, Grant SM (2009) Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J Geophys Res 114:G03003

    Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  PubMed  Google Scholar 

  • Davis AR (1987) Variation in recruitment of the subtidal colonial ascidian Podoclavella cylindrica (Quoy & Gaimard): the role of substratum choice and early survival. J Exp Mar Biol Ecol 106:57–71

    Article  Google Scholar 

  • Davis AD, Butler AJ (1989) Direct observations of larval dispersal in the colonial ascidian Podoclavella moluccensis Sluiter: evidence for closed populations. J Exp Mar Biol Ecol 127:189–203

    Article  Google Scholar 

  • Dorschel B, Gutt J, Piepenburg D, Schröder M, Arndt JE (2014) The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences 11:3797–3817

    Article  Google Scholar 

  • Dorschel B, Gutt J, Huhn O, Bracher A, Huntemann M, Huneke W, Gebhardt C, Schröder M, Herr H (2015) Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. doi:10.1007/s00300-015-1861-2

  • Ducklow HW, Fraser W, Karl DM, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Verne M, Daniels RM (2006) Water-column processes in the West Antarctic Peninsula and the Ross Sea: interannual variations and foodweb structure. Deep-Sea Res II 53:834–852

    Article  Google Scholar 

  • Fischer G, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Article  Google Scholar 

  • Gili JM, Coma R, Orejas C, López-González PJ, Zabala M (2001) Are Antarctic suspension-feeding communities different from those elsewhere in the world. Polar Biol 24:473–485

    Article  Google Scholar 

  • Grave C (1936) Metamorphosis of ascidian larvae. Carnegie Inst. Washington Paper. Tortugas Lab 29:209–291

    Google Scholar 

  • Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic–benthic coupling in polar regions. J Mar Syst 2:495–518

    Article  Google Scholar 

  • Gutt J (2013) The expedition of the research vessel “Polarstern” to the antarctic in 2013 (ANT-XXIX/3). Ber Polarforsch 665:1–150

    Google Scholar 

  • Gutt J, Koltun VM (1995) Sponges of the Lazarev and Weddell Sea, Antarctica: explanations for their patchy occurrence. Antarct Sci 7:227–234

    Article  Google Scholar 

  • Gutt J, Piepenburg D (1991) Dense aggregations of three deep-sea holothurians in the southern Weddell Sea, Antarctica. Mar Ecol Prog Ser 68:277–285

    Article  Google Scholar 

  • Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83

    Article  Google Scholar 

  • Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247

    Article  Google Scholar 

  • Gutt J, Starmans A (2003) Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biol 26:276–278

    Google Scholar 

  • Gutt J, Cape M, Dimmler W, Fillinger L, Isla E, Lieb V, Lundälv T, Pulcher C (2013) Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biol 36:895–906

    Article  Google Scholar 

  • Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate cores in the central North Pacific. Deep-Sea Res Oceanogr Abstr 3:185–209

    Article  Google Scholar 

  • Jackson JBC (1977) Competition on marine and hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 3:743–767

    Article  Google Scholar 

  • Jackson JBC, Buss L (1975) Alleopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci USA 12:5160–5163

    Article  Google Scholar 

  • Jerosch K, Kuhn G, Krajnik I, Scharf FK, Dorschel B (2015) A geomorphological seabed classification for the Weddell Sea, Antarctica. J Geophys Res. doi:10.1007/s11001-015-9256-x

  • Keough MJ (1998) Responses of settling invertebrate larvae to the presence of established recruits. J Exp Mar Biol Ecol 231:1–19

    Article  Google Scholar 

  • Kowalke J (1999) Filtration in antarctic ascidians - striking a balance. J Exp Mar Biol Ecol 242:233–244

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage, Beverly Hills

    Google Scholar 

  • Lampitt RS, Billett DSM, Rice AL (1986) Biomass of the invertebrate megabenthos from 500 to 4100 m in the northeast Atlantic Ocean. Mar Biol 1:69–81

    Article  Google Scholar 

  • Lizotte MP (2001) The contribution of sea-ice algae to Antarctic marine primary production. Am Zool 41:57–73

    Google Scholar 

  • Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna of shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192

    Google Scholar 

  • Maritorena S, d’Andon OHF, Mangin A, Siegel DA (2010) Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 8:1791–1804

    Article  Google Scholar 

  • Millar RH (1960) The identity of the ascidians Styela mammiculata Carlisle and S. clava Herdman. J Mar Biol Ass UK 39:509–511

    Article  Google Scholar 

  • Moreau S, Mostajir B, Belanger S, Schloss IR, Vancoppenolle M, Demers S, Ferreyra GA (2015) Climate change enhances primary production in the western Antarctic Peninsula. Glob Change Biol 21:2191–2205

    Article  Google Scholar 

  • Newton KL, Creese B, Raftos D (2007) Spatial patterns of ascidian assemblages on subtidal rocky reefs in the Port Stephens-Great Lakes Marine Park, New South Wales. Mar Freshw Res 58:843–855

    Article  Google Scholar 

  • Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I 42:641–673

    Article  Google Scholar 

  • Osman RW, Whitlatch RB (1995) The influence of resident adults on recruitment: a comparison to settlement. J Exp Mar Biol Ecol 2:169–198

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossett H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256

    Article  Google Scholar 

  • Petersen JK, Svane IB (1995) Larval dispersal in the ascidian Ciona intestinalis (L.). Evidence for a closed population. J Exp Mar Biol Ecol 1:89–102

    Article  Google Scholar 

  • Piepenburg D, Ambrose WG, Brandt A, Renaud PE, Ahrens MJ, Jensen P (1997) Benthic community patterns reflect water column processes in the Northeast Water polynya (Greenland). J Mar Syst 10:467–482

    Article  Google Scholar 

  • Primo C, Vázquez E (2007) Zoogeography of the Antarctic ascidian fauna in relation to the sub-Antarctic and South America. Antarct Sci 19:321–336

    Article  Google Scholar 

  • Primo C, Vázquez E (2009) Antarctic ascidians: an isolated and homogeneous fauna. Polar Res 28:403–414

    Article  Google Scholar 

  • Primo C, Vázquez E (2014) Ascidian fauna south of the Sub-Tropical Front. In: de Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic Atlas of the Southern Ocean. SCAR, Cambridge, pp 470–475

    Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Martinez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899

    Article  Google Scholar 

  • Ramos-Esplá AA, Carcel JA, Varela M (2005) Zoogeographical relationships of the littoral ascidiofauna around the Antarctic Peninsula, in the Scotia Arc and in the Magellan region. Sci Mar 69:215–223

    Article  Google Scholar 

  • Rius M, Branch GM, Griffiths CL, Turon X (2010) Larval settlement behaviour in six gregarious ascidians in relation to adult distribution. Mar Ecol Prog Ser 418:151–163

    Article  Google Scholar 

  • Sahade R, Tatián M, Kowalke J, Kühne S, Esna GB (1998) Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctica. Polar Biol 19:85–91

    Article  Google Scholar 

  • Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, Barnes DKA, Servetto N, Tarantelli S, Taitán Zamboni N, Abele D (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. doi:10.1126/sciadv.1500050

    PubMed  PubMed Central  Google Scholar 

  • Sane E, Isla E, Grémare A, Gutt J, Vétion G, DeMaster DJ (2011) Pigments in sediments beneath recently collapsed ice shelves: the case of Larsen A and B shelves, Antarctic Peninsula. J Sea Res 65:94–102

    Article  Google Scholar 

  • Segelken-Voigt A, Bracher A, Dorschel B, Gutt J, Huneke W, Link H, Piepenburg D (2015). Spatial distribution patterns of ascidians (Ascidiacea: Tunicata) in combination with information on bathymetry, oceanography, chlorophyll-a, and sea-ice on the continental shelves off the northern Antarctic Peninsula during POLARSTERN cruise ANT-XXIX/3. www.pangaea.de, doi:10.1594/PANGAEA.849291

  • Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira Da Rocha R, Swalla BJ, Turron X (2015) Ascidiacea World Database. http://www.marinespecies.org/ascidiacea. Accessed at 20 June 2015

  • Sieg J, Wägele JW (1990) Fauna der Antarktis. Parey, Berlin/Hamburg

    Google Scholar 

  • Sievers HA (1982) The stratification and water masses at Drake Passage. J Geophys Res 89:10489–10514

    Article  Google Scholar 

  • Smale DA, Barnes DK (2008) Likely responses of the Antarctic benthos to climate-related changes. Ecography 31:289–305

    Article  Google Scholar 

  • Smith F, Witman JD (1999) Species diversity in subtidal landscapes: maintenance by physical processes and larval recruitment. Ecology 80:51–69

    Article  Google Scholar 

  • Smith CR, Mincks SL, DeMaster DJ (2006) A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res II 53:875–894

    Article  Google Scholar 

  • Spreen G, Kaleschke L, Heygster G (2008) Sea-ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res 113:C02S03

    Google Scholar 

  • Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar Biol 135:269–280

    Article  Google Scholar 

  • Strathmann RR, Kendall LR, Marsh AG (2006) Embryonic and larval development of a cold adapted Antarctic ascidian. Polar Biol 29:495–501

    Article  Google Scholar 

  • Svane I, Havenhand JN (1993) Spawning and dispersal in Ciona intestinalis (L.). Mar Ecol 14:53–66

    Article  Google Scholar 

  • Svane I, Young CM (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol 27:45–90

    Google Scholar 

  • Tatián M, Sahade RJ, Doucet ME, Esnal GB (1998a) Some aspects of Antarctic ascidians (Tunicata, Ascidiacea) of Potter Cove, King George Island. Ber Polarforsch 299:113–118

    Google Scholar 

  • Tatián M, Sahade RJ, Doucet ME, Esnal GB (1998b) Ascidians (Tunicata, Ascidiacea) of Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 10:147–152

    Article  Google Scholar 

  • Tatián M, Antacli JC, Sahade R (2005) Ascidians (Tunicata, Ascidiacea): species distribution along the Scotia Arc. Sci Mar 69:205–214

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Tuner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Weiss AD (2001) Topographic position and landforms analysis. Poster presentation, ESRI users conference, San Diego, CA. http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf. Accessed 16 Aug 2015

  • Wienberg C, Wintersteller P, Beuck L, Hebbeln D (2013) Coral Patch seamount (NE Atlantic)—a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys. Biogeosciences 10:3421–3443

    Article  Google Scholar 

  • Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geol 30:3–35

    Google Scholar 

  • Woodin SA (1976) Adult-larval interactions in dense infaunal assemblages: patterns of abundance. J Mar Res 34:25–41

    Google Scholar 

  • Woodin SA (1978) Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology 59:274–284

    Article  Google Scholar 

  • Wright DJ, Lundblad ER, Larkin EM, Rinehart RW, Murphy J, Cary-Kothera L, Draganov K (2005) ArcGIS Benthic Terrain Modeler [a collection of tools used with bathymetric data sets to examine the deepwater benthic environment]. Oregon State University, Davey Jones’ Locker Seafloor Mapping/Marine GIS Laboratory and NOAA Coastal Services Center

  • Young CM, Chia FS (1984) Microhabitat-associated variability in survival and growth of subtidal solitary ascidians during the first 21 days after settlement. Mar Biol 81:61–68

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Marcos Tatián (CONICET Instituto Antartico Argentino) for support in species determination, Michael Klages and the AWI deep-sea group for providing the Ocean Floor Observation System (OFOS) and the SCAR Biology Program AnT-ERA for financial support to join a post-expedition workshop in Dijon in September 2014. We are also grateful to the captain and crew of Polarstern cruise ANT-XXIX/3 (PS81) for their technical and logistical support. H. Link was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority programme “Antarctic Research with comparative investigations in Arctic ice areas” by grant LI2313/3-1 and the NSERC Canadian Healthy Oceans Network. This study was supported by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (Grant AWI_PS81_03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Segelken-Voigt.

Additional information

This article belongs to the special issue on “High environmental variability and steep biological gradients in the waters off the northern Antarctic Peninsula,” coordinated by Julian Gutt, Bruno David and Enrique Isla.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segelken-Voigt, A., Bracher, A., Dorschel, B. et al. Spatial distribution patterns of ascidians (Ascidiacea: Tunicata) on the continental shelves off the northern Antarctic Peninsula. Polar Biol 39, 863–879 (2016). https://doi.org/10.1007/s00300-016-1909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1909-y

Keywords

Navigation