Skip to main content

Advertisement

Log in

Spatiotemporal variation in home range size of female polar bears and correlations with individual contaminant load

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We quantified the effect of multiple environmental and biological determinants on variation in home range size across multiple spatial (total-home range–core-home range areas) and temporal (seasonal and all seasons combined) scales for 22 adult female polar bears (Ursus maritimus) from Svalbard, Norway (2003–2011). We also evaluated if considering spatiotemporal variation in home range size and location is valuable to assess variation in concentrations of persistent organic pollutants (POPs). In general, home range size was negatively related to the proportion of land within the home range and sea ice concentration, but positively to snow depth. However, effects typically differed between seasons and total, and core-home range size, providing evidence that home range size is scale dependent in this large Arctic mammal. Females accompanied by dependent offspring had smaller home ranges during the breeding season and spring compared to solitary females, while age and body mass did not explain variation in home range size. Correlations between POP concentration and space use were marginally significant, but consistently stronger at fine spatiotemporal resolutions (i.e. core-home ranges during the breeding season) compared to coarse resolution (i.e. total-home ranges over the entire year). We also found that the geographic location of the home range is a stronger ecological correlate of POP concentration than home range size. To improve our understanding of the relation between POPs and animal space use, we recommend increasing the temporal frequency of POP measurements to evaluate how POP concentrations vary during a year and across areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amstrup SC, Durner GM, Stirling I et al (2000) Movements and distribution of polar bears in the Beaufort Sea. Can J Zool 78:948–966. doi:10.1139/cjz-78-6-948

    Article  Google Scholar 

  • Bernhoft A, Wiig O, Skaare JU (1997) Organochlorines in polar bears (Ursus maritimus) at Svalbard. Environ Pollut 95:159–175. doi:10.1016/S0269-7491(96)00122-4

    Article  CAS  PubMed  Google Scholar 

  • Börger L, Dalziel BD, Fryxell JM (2008) Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol Lett 11:637–650. doi:10.1111/j.1461-0248.2008.01182.x

    Article  PubMed  Google Scholar 

  • Brown TM, Luque S, Sjare B et al (2014) Satellite telemetry informs PCB source apportionment in a mobile, high trophic level marine mammal: the ringed seal (Pusa hispida). Environ Sci Technol 48:13110–13119. doi:10.1021/es504010q

    Article  CAS  PubMed  Google Scholar 

  • Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2012) Movement upscaled—the importance of individual foraging movement for community response to habitat loss. Ecography 35:436–445

    Article  Google Scholar 

  • Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541. doi:10.1002/ieam.258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352

    Article  Google Scholar 

  • Bytingsvik J, Lie E, Aars J et al (2012a) PCBs and OH-PCBs in polar bear mother–cub pairs: a comparative study based on plasma levels in 1998 and 2008. Sci Total Environ 417–418:117–128. doi:10.1016/j.scitotenv.2011.12.033

    Article  PubMed  Google Scholar 

  • Bytingsvik J, van Leeuwen SPJ, Hamers T et al (2012b) Perfluoroalkyl substances in polar bear mother–cub pairs: a comparative study based on plasma levels from 1998 and 2008. Environ Int 49:92–99. doi:10.1016/j.envint.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  • Bytingsvik J, Simon E, Leonards PEG et al (2013) Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs. Environ Sci Technol 47:4778–4786. doi:10.1021/es305160v

    Article  CAS  PubMed  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Christensen-Dalsgaard SN, Aars J, Andersen M et al (2010) Accuracy and precision in estimation of age of Norwegian Arctic polar bears (Ursus maritimus) using dental cementum layers from known-age individuals. Polar Biol 33:589–597. doi:10.1007/s00300-009-0734-y

    Article  Google Scholar 

  • Derocher AE, Wiig Ø (2002) Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J Zool 256:343–349. doi:10.1017/S0952836902000377

    Article  Google Scholar 

  • Derocher AE, Wolkers H, Colborn T et al (2003) Contaminants in Svalbard polar bear samples archived since 1967 and possible population level effects. Sci Total Environ 301:163–174. doi:10.1016/S0048-9697(02)00303-0

    Article  CAS  PubMed  Google Scholar 

  • Derocher AE, Lunn NJ, Stirling I (2004) Polar bears in a warming climate. Integr Comp Biol 44:163–176. doi:10.1093/icb/44.2.163

    Article  PubMed  Google Scholar 

  • Dietz R, Rigét FF, Sonne C et al (2013) Three decades (1983–2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 1: legacy organochlorine contaminants. Environ Int 59:485–493. doi:10.1016/j.envint.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Durner GM, Douglas DC, Nielson RM et al (2009) Predicting 21st-century polar bear habitat distribution from global climate models. Ecol Monogr 79:25–58. doi:10.1890/07-2089.1

    Article  Google Scholar 

  • Elliott JE, Morrissey CA, Henny CJ et al (2007) Satellite telemetry and prey sampling reveal contaminant sources to pacific northwest ospreys. Ecol Appl 17:1223–1233. doi:10.1890/06-1213

    Article  PubMed  Google Scholar 

  • Ferguson SH, Taylor MK, Born EW et al (1999) Determinants of home range size for polar bears (Ursus maritimus). Ecol Lett 2:311–318

    Article  Google Scholar 

  • Forrester T, Casady D, Wittmer H (2015) Home sweet home: fitness consequences of site familiarity in female black-tailed deer. Behav Ecol Sociobiol 69:603–612. doi:10.1007/s00265-014-1871-z

    Article  Google Scholar 

  • Freitas C, Kovacs KM, Andersen M et al (2012) Importance of fast ice and glacier fronts for female polar bears and their cubs during spring in Svalbard, Norway. Mar Ecol Prog Ser 447:289–304. doi:10.3354/meps09516

    Article  Google Scholar 

  • Fryxell JM, Hazell M, Borger L et al (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci USA 105:19114–19119. doi:10.1073/pnas.0801737105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furgal CM, Innes S, Kovacs KM (1996) Characteristics of ringed seal, Phoca hispida, subnivean structures and breeding habitat and their effects on predation. Can J Zool 74:858–874. doi:10.1139/z96-100

    Article  Google Scholar 

  • Gurarie E, Ovaskainen O (2011) Characteristic spatial and temporal scales unify models of animal movement. Am Nat 178:113–123. doi:10.1086/660285

    Article  PubMed  Google Scholar 

  • Harestad AS, Bunnell FL (1979) Home range and body-weight—a reevaluation. Ecology 60:389–402

    Article  Google Scholar 

  • Huntington HP (2009) A preliminary assessment of threats to Arctic marine mammals and their conservation in the coming decades. Mar Policy 33:77–82. doi:10.1016/j.marpol.2008.04.003

    Article  Google Scholar 

  • Kernohan BJ, Gitzen RA, Millspaugh JJ (2001) Analysis of animal space use and movements. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic Press, San Diego, pp 126–164

    Google Scholar 

  • Laidre KL, Born EW, Gurarie E et al (2013) Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus). Proc R Soc B Biol Sci 280:20122371. doi:10.1098/rspb.2012.2371

    Article  Google Scholar 

  • Laidre K, Born E, Heagerty P et al (2015) Shifts in female polar bear (Ursus maritimus) habitat use in East Greenland. Polar Biol 38:879–893. doi:10.1007/s00300-015-1648-5

    Article  Google Scholar 

  • Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Letcher RJ, Gebbink WA, Sonne C et al (2009) Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland. Environ Int 35:1118–1124. doi:10.1016/j.envint.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418

    Article  Google Scholar 

  • Loeng H (1991) Features of the physical oceanographic conditions of the Barents Sea. Polar Res 10:5–18. doi:10.1111/j.1751-8369.1991.tb00630.x

    Article  Google Scholar 

  • Lone K, Aars J, Ims RA (2013) Site fidelity of Svalbard polar bears revealed by mark-recapture positions. Polar Biol 36:27–39. doi:10.1007/s00300-012-1235-y

    Article  Google Scholar 

  • Lydersen C, Wolkers H, Severinsen T et al (2002) Blood is a poor substrate for monitoring pollution burdens in phocid seals. Sci Total Environ 292:193–203. doi:10.1016/S0048-9697(01)01121-4

    Article  CAS  PubMed  Google Scholar 

  • Martin J, van Moorter B, Revilla E et al (2013) Reciprocal modulation of internal and external factors determines individual movements. J Anim Ecol 82:290–300. doi:10.1111/j.1365-2656.2012.02038.x

    Article  PubMed  Google Scholar 

  • Mauritzen M, Derocher AE, Wiig Ø (2001) Space-use strategies of female polar bears in a dynamic sea ice habitat. Can J Zool 79:1704–1713. doi:10.1139/cjz-79-9-1704

    Article  Google Scholar 

  • Mauritzen M, Derocher AE, Pavlova O, Wiig Ø (2003) Female polar bears, Ursus maritimus, on the Barents Sea drift ice: walking the treadmill. Anim Behav 66:107–113. doi:10.1006/anbe.2003.2171

    Article  Google Scholar 

  • McKinney MA, Peacock E, Letcher RJ (2009) Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ Sci Technol 43:4334–4339. doi:10.1021/es900471g

    Article  CAS  PubMed  Google Scholar 

  • McKinney MA, Letcher RJ, Aars J et al (2011) Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005–2008. Environ Int 37:365–374. doi:10.1016/j.envint.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  • Muir DCG, Norstrom RJ, Simon M (1988) Organochlorine contaminants in arctic marine food chains: accumulation of specific polychlorinated biphenyls and chlordane-related compounds. Environ Sci Technol 22:1071–1079. doi:10.1021/es00174a012

    Article  CAS  PubMed  Google Scholar 

  • Nathan R, Getz WM, Revilla E et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen GH, Mauritzen M, Derocher AE et al (2003) Space-use strategy is an important determinant of PCB concentrations in female polar bears in the Barents sea. Environ Sci Technol 37:4919–4924. doi:10.1021/es034380e

    Article  CAS  PubMed  Google Scholar 

  • Parks EK, Derocher AE, Lunn NJ (2006) Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can J Zool 84:1281–1294. doi:10.1139/Z06-115

    Article  Google Scholar 

  • Pilfold NW, Derocher AE, Richardson E (2014) Influence of intraspecific competition on the distribution of a wide-ranging, non-territorial carnivore. Glob Ecol Biogeogr 23:425–435. doi:10.1111/geb.12112

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ragland JM, Arendt MD, Kucklick JR, Keller JM (2011) Persistent organic pollutants in blood plasma of satellite-tracked adult male loggerhead sea turtles (Caretta caretta). Environ Toxicol Chem 30:1549–1556. doi:10.1002/etc.540

    Article  CAS  PubMed  Google Scholar 

  • Schliebe S, Rode KD, Gleason JS et al (2008) Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Biol 31:999–1010. doi:10.1007/s00300-008-0439-7

    Article  Google Scholar 

  • Seaman DE, Millspaugh JJ, Kernohan BJ et al (1999) Effects of sample size on kernel home range estimates. J Wildl Manag 63:739–747. doi:10.2307/3802664

    Article  Google Scholar 

  • Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36:461–491. doi:10.1016/j.envint.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  • Stamps J (1995) Motor learning and the value of familiar space. Am Nat 146:41–58

    Article  Google Scholar 

  • Stirling I (2011) Polar bears: a natural history of a threatened species. Fitzhenry & Whiteside, Markham

    Google Scholar 

  • Stirling I, McEwan E (1975) Caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Can J Zool 53:1021–1027. doi:10.1139/z75-117

    Article  CAS  PubMed  Google Scholar 

  • Stirling I, Spencer C, Andriashek D (1989) Immobilization of polar bears (Ursus maritimus) with Telazol® in the Canadian Arctic. J Wildl Dis 25:159–168. doi:10.7589/0090-3558-25.2.159

    Article  CAS  PubMed  Google Scholar 

  • Stirling I, Andriashek D, Calvert W (1993) Habitat preferences of polar bears in the western Canadian Arctic in late winter and spring. Polar Rec 29:13–24. doi:10.1017/S0032247400023172

    Article  Google Scholar 

  • Thiemann GW, Derocher AE, Cherry SG et al (2013) Effects of chemical immobilization on the movement rates of free-ranging polar bears. J Mammal 94:386–397. doi:10.1644/12-MAMM-A-230.1

    Article  Google Scholar 

  • van Beest FM, Rivrud IM, Loe LE et al (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol 80:771–785

    Article  PubMed  Google Scholar 

  • Worton BJ (1987) A review of models of home range for animal movement. Ecol Model 38:277–298

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

A large number of people were involved in preparing this study and we gratefully acknowledge their support. Specifically, we want to thank Katharina B. Løken at NMBU, for analysing the blood samples for POPs concentrations, the crew on RV Lance, the pilots and mechanics from AIRLIFT and The Governor of Svalbard. Funding for this research was provided by the Norwegian Polar Institute, Norwegian Ministry of the Environment and the Danish Cooperation for Environment in the Arctic program (DANCEA). We also acknowledge support from World Wildlife Fund for collaring of adult females. The Editor and three anonymous reviewers provided constructive feedback on a previous draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris M. van Beest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Beest, F.M., Aars, J., Routti, H. et al. Spatiotemporal variation in home range size of female polar bears and correlations with individual contaminant load. Polar Biol 39, 1479–1489 (2016). https://doi.org/10.1007/s00300-015-1876-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1876-8

Keywords

Navigation