Skip to main content

Advertisement

Log in

Sensitivity analysis of ecosystem CO2 exchange to climate change in High Arctic tundra using an ecological process-based model

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Arctic terrestrial ecosystems are extremely vulnerable to climate change. A major concern is how the carbon balance of these ecosystems will respond to climate change. In this study, we constructed a simple ecological process-based model to assess how the carbon balance will be altered by ongoing climate change in High Arctic tundra ecosystems using in situ observations of carbon cycle processes. In particular, we simulated stand-level photosynthesis, root respiration, heterotrophic respiration, and hence net ecosystem production (NEP) of a plant community dominated by vascular plants and mosses. Analyses were carried out for current and future temperature and precipitation conditions. Our results showed that the tundra ecosystem was a CO2 sink (NEP of 2.3–18.9 gC m−2 growing season−1) under present temperature conditions. Under rising temperature (2–6 °C), carbon gain is significantly reduced, but a few days’ extension of the foliage period caused by their higher temperatures compensated for the negative effect of temperature on NEP. Precipitation is the major environmental factor driving photosynthetic productivity of mosses, but it had a minor influence on community-level NEP. However, NEP decreased by a maximum 15.3 gC m−2 growing season−1 under a 30-day prolongation of the moss-growing season, suggesting that growing season extension had a negative effect on ecosystem carbon gain, because of poorer light conditions in autumn. Because the growing season creates a weak CO2 sink at present, lengthening of the snow-free season coupled with rising temperature could seriously affect the future carbon balance of this Arctic tundra ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment scientific report. Cambridge University Press, Cambridge

    Google Scholar 

  • Aerts RJ, Verhoeven TA, Whigham D (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bekku YS, Nakatsubo T, Kume A, Adachi M, Koizumi H (2003) Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Appl Soil Ecol 22:205–210

    Article  Google Scholar 

  • Belshe EF, Schuur EAG, Bolker BM (2013) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol Lett 16:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Berg B (1984) Decomposition of moss litter in a mature Scots pine forest. Pedobiologia 26:301–308

    Google Scholar 

  • Billings WD (1987) Constraints to plant growth, reproduction, and establishment in Arctic environments. Arct Alp Res 19:357–365

    Article  Google Scholar 

  • Bliss LC, Gold WG (1999) Vascular plant reproduction, establishment, and growth and the effects of cryptogamic crusts within a polar desert ecosystem, Devon Island, N.W.T., Canada. Can J Bot 77:623–636

    Google Scholar 

  • Callaghan TV, Björn LO, Chernov YI, Chapin FS III, Christensen TR, Huntley B, Ims R, Johansson M, Jolly D, Matveyeva NV, Panikov N, Oechel WC, Shaver GR (2005) Arctic tundra and polar ecosystems. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment, ACIA. Cambridge University Press, Cambridge, pp 243–351

    Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460

    Article  PubMed  Google Scholar 

  • Clein JS, Kwiatkowski BL, McGuire AD, Hobbie JE, Rastetter EB, Melillo JM, Kicklighter DW (2000) Modelling carbon responses of tundra ecosystems to historical and projected climate: a comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties. Glob Change Biol 6(S1):127–140

    Article  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Díaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren C-H, Walker X, Webber PJ, Welker JM, Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–457

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Chang Biol 12:731–750

    Article  Google Scholar 

  • Førland EJ, Hanssen-Bauer I (2003) Past and future climate variations in the Norwegian Arctic: overview and novel analyses. Polar Res 22:113–124

    Article  Google Scholar 

  • Førland EJ, Skaugen TE, Benestad RE, Hanssen-Bauer I, Tveito OE (2004) Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct Antarct Alp Res 36:347–356

    Article  Google Scholar 

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Advances in Meteorology. doi:10.1155/2011/893790

    Google Scholar 

  • Genet H, Oberbauer SF, Colby SJ, Staudhammer CL, Starr G (2013) Growth responses of Sphagnum hollows to a growing season lengthening manipulation in Alaskan Arctic tundra. Polar Biol 36:41–50

    Article  Google Scholar 

  • Grant RF, Humphreys ER, Lafleur PM, Dimitrov DD (2011) Ecological controls on net ecosystem productivity of a mesic Arctic tundra under current and future climates. J Geophys Res 116:G01031. doi:10.1029/2010JG001555

    Google Scholar 

  • Groendahl L, Friborg T, Soegaard H (2007) Temperature and snow-melt controls on interannual variability in carbon exchange in the high Arctic. Theor Appl Climatol 88:111–125

    Article  Google Scholar 

  • Grøndahl L, Friborg T, Christensen TR, Ekberg A, Elberling B, Illeris L, Nordstrøm C, Rennermalm Å, Sigsgaard C, Søgaard H (2008) Spatial and inter-annual variability of trace gas fluxes in a heterogeneous high-Arctic landscape. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-Arctic ecosystem dynamics in a changing climate. Academic, London, pp 473–498

    Chapter  Google Scholar 

  • Hanssen-Bauer I (2002) Temperature and precipitation in Svalbard 1912–2050: measurements and scenarios. Polar Rec 38:225–232

    Article  Google Scholar 

  • Hill GB, Henry GHR (2011) Responses of High Arctic wet sedge tundra to climate warming since 1980. Glob Chang Biol 17:276–287

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hodkinson ID, Webb NR, Bale JS, Block W (1999) Hydrology, water availability and tundra ecosystem function in a changing climate: the need for a closer integration of ideas? Glob Change Biol 5:359–369

    Article  Google Scholar 

  • Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007) Rapid advancement of spring in the High Arctic. Curr Biol 17:R449–R451

    Article  PubMed  Google Scholar 

  • Hudson JMG, Henry GHR (2010) High Arctic plant community resists 15 years of experimental warming. J Ecol 98:1035–1041

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate Change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Kappen L (1993) Plant activity under snow and ice, with particular reference to lichens. Arctic 46:297–302

    Article  Google Scholar 

  • Lloyd CR (2001) The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. Glob Change Biol 7:405–426

    Article  Google Scholar 

  • Marchand FL, Nijs I, de Boeck HJ, Kockelbergh F, Mertens S (2004) Increased turnover but little change in the carbon balance of High-Arctic tundra exposed to whole growing season warming. Arct Antarct Alp Res 36:298–307

    Article  Google Scholar 

  • Michaelson GJ, Ping CL (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska. J Geophys Res-Atmos 108:8164. doi:10.1029/2001JD000920

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in Arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Muraoka H, Uchida M, Mishio M, Nakatsubo T, Kanda H, Koizumi H (2002) Leaf photosynthetic characteristics and net primary production of the polar willow (Salix polaris) in a High Arctic polar semi-desert, Ny-Ålesund, Svalbard. Can J Bot 80:1193–1202

    Article  Google Scholar 

  • Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T (2008) Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a High-Arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications to their role in ecosystem carbon gain. J Plant Res 121:137–145

    Article  CAS  PubMed  Google Scholar 

  • Nakatsubo T, Bekku Y, Kume A, Koizumi H (1998) Respiration of the belowground parts of vascular plants: its contribution to total soil respiration on a successional glacier foreland in Ny-Ålesund, Svalbard. Polar Res 17:53–59

    Article  Google Scholar 

  • Nakatsubo T, Bekku YS, Uchida M, Muraoka H, Kume A, Ohtsuka T, Masuzawa T, Kanda H, Koizumi H (2005) Ecosystem development and carbon cycle on a glacier foreland in the high Arctic, Ny-Ålesund, Svalbard. J Plant Res 118:173–179

    Article  PubMed  Google Scholar 

  • Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of Arctic plants and ecosystems. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic, San Diego, pp 139–168

    Chapter  Google Scholar 

  • Räisänen J, Palmer TN (2001) A probability and decision-model analysis of a multi-model ensemble of climate change simulations. J Clim 14:3212–3226

    Article  Google Scholar 

  • Schaeffer SM, Sharp E, Schimel JP, Welker JM (2013) Soil–plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Glob Chang Biol 19:3529–3539

    PubMed  Google Scholar 

  • Sharp ED, Sullivan PF, Steltzer H, Csank AZ, Welker JM (2013) Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic. Glob Change Biol 19:1780–1792

    Article  Google Scholar 

  • Sitch S, McGuire AD, Kimball J, Gedney N, Gamon J, Engstrom R, Wolf A, Zhuang Q, Clein J, McDonald KC (2007) Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling. Ecol Appl 17:213–234

    Article  PubMed  Google Scholar 

  • Starr G, Oberbauer SF (2003) Photosynthesis of Arctic evergreens under snow: implications for tundra ecosystem carbon balance. Ecology 84:1415–1420

    Article  Google Scholar 

  • Street LE, Stoy PC, Sommerkorn M, Fletcher BJ, Sloan VL, Hill TC, Williams M (2012) Seasonal bryophyte productivity in the sub-Arctic: a comparison with vascular plants. Funct Ecol 26:365–378

    Article  Google Scholar 

  • Thormann MN, Bayley SE, Currah RS (2001) Comparison of decomposition of belowground and aboveground plant litters in peat lands of boreal Alberta, Canada. Can J Bot 79:9–22

    CAS  Google Scholar 

  • Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, London

    Google Scholar 

  • Tieszen LL (1974) Photosynthetic competence of the subnivean vegetation of an Arctic tundra. Arct Alp Res 6:253–256

    Article  Google Scholar 

  • Uchida M, Muraoka H, Nakatsubo T, Bekku Y, Ueno T, Kanda H, Koizumi H (2002) Net photosynthesis, respiration, and production of the moss Sanionia uncinata on a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Arct Antarct Alp Res 34:287–292

    Article  Google Scholar 

  • Uchida M, Kishimoto A, Muraoka H, Nakatsubo T, Kanda H, Koizumi H (2010) Seasonal shift in factors controlling net ecosystem production in a high Arctic terrestrial ecosystem. J Plant Res 123:79–85

    Article  PubMed  Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Sci 344:508–509

    Article  Google Scholar 

  • Webber PJ (1978) Spatial and Temporal Variation of the Vegetation and Its Production, Barrow, Alaska. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan Arctic tundra. Springer, New York, pp 37–112

    Chapter  Google Scholar 

  • Wein RW, Bliss LC (1974) Primary production in Arctic cottongrass tussock tundra communities. Arct Alp Res 6:261–274

    Article  Google Scholar 

  • Welker JM, Fahnestock JT, Henry GHR, O’Dea KW, Chimner RA (2004) CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Glob Change Biol 10:1981–1995

    Article  Google Scholar 

  • Williams M, Rastetter EB (1999) Vegetation characteristics and primary productivity along an Arctic transect: implications for scaling-up. J Ecol 87:885–898

    Article  Google Scholar 

  • Willmott CJ (1984) On the evaluation of model performance in physical geography. In: Gaile GL, Willmott CJ (eds) Spatial statistics and models. Reidel, Dordrecht, pp 443–460

    Chapter  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Uelas JP, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17:927–942

    Article  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Nakatsubo T (2007) Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Ålesund, Svalbard. Polar Res 26:22–30

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant number: 20405010 and 24405009), the National Institute of Polar Research (Project number: KP-11), and  the GRENE Arctic Climate Change Research Project provided by the Ministry of Education, Culture, Sports, Science and Technology, Japan. Production of this paper was supported by a National Institute of Polar Research publication subsidy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Uchida.

Appendix

Appendix

See Table 2.

Table 2 Nomenclature of coefficients and variables used for the model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, M., Muraoka, H. & Nakatsubo, T. Sensitivity analysis of ecosystem CO2 exchange to climate change in High Arctic tundra using an ecological process-based model. Polar Biol 39, 251–265 (2016). https://doi.org/10.1007/s00300-015-1777-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1777-x

Keywords

Navigation