Skip to main content

Advertisement

Log in

Is management limiting the recovery of the New Zealand sea lion Phocarctos hookeri?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Pup production of the ‘nationally critical’ New Zealand sea lion Phocarctos hookeri has declined by 48 % since 1998, with fisheries bycatch playing a role in this decline. Current management of the sea lion population involves, amongst other measures, the setting of an annual bycatch limit based on Bayesian modelling of the sea lion population and fisheries information. Success of management scenarios is determined against two criteria, both of which involve keeping the sea lion population at or above 90 % of a modelled carrying capacity (6,987 mature individuals). Due to a lack of information on the pre-sealing abundance of the New Zealand sea lion, it is unclear whether the modelled carrying capacity represents a cap on sea lion recovery. Here, I use published estimates of genetic diversity based on microsatellite loci (expected heterozygosity, H e) of the New Zealand sea lion and other otariid species to estimate historical effective population size (N e). I then use existing knowledge of the ratio of N e to census population size (N C) to determine a historical census population size of these species. Genetical estimates of historical N e suggest that NZ sea lions were considerably more abundant (>68,000 individuals) historically than the current population estimate (11,855 animals). Importantly, the genetical estimate of historical population size suggests that the modelled carrying capacity (6,987 mature sea lions) is likely an underestimation of recovery potential of the species; hence, current management maybe limiting the recovery of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo-Whitehouse K, Petetti L, Duignan P, Castinel A (2009) Hookworm infection, anaemia and genetic variability of the New Zealand sea lion. Proc R Soc B 276:3523–3529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akst EP, Boersma PD, Fleischer RC (2002) A comparison of genetic diversity between the Galápagos Penguin and the Magellanic Penguin. Conserv Genet 3:375–383

    Article  CAS  Google Scholar 

  • Alter SE, Rynes E, Palumbi SR (2007) DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc Natl Acad Sci USA 104:15162–15167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker CS, Chilvers BL, Constantine R, DuFresne S, Mattlin RH, Van Helden A, Hitchmough R (2010) Conservation status of New Zealand marine mammals (suborders Cetacea and Pinnipedia), 2009. N Z J Mar Freshw Res 44:101–115

    Article  Google Scholar 

  • Boessenkool S, Austin JJ, Worthy TH, Scofield P, Cooper A, Seddon PJ, Waters JM (2009) Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand. Proc R Soc B 276:815–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowen WD (2012) A review of evidence for indirect effects of commercial fishing on New Zealand sea lions (Phocarctos hookeri) breeding on the Auckland Islands. New Zealand Department of Conservation http://www.doc.govt.nz/Documents/conservation/marine-and-coastal/marine-conservation-services/pop-2010-01-nz-sea-lion-indirect-effects-review.pdf

  • Bradshaw CJA, Haddon M, Lonergan M (2013) Review of models and data underpinning the management of fishing-related mortality of New Zealand sea lions (Phocarctos hookeri), in the SQU6T trawl fishery. New Zealand Ministry of Primary Industries

  • Breen PA, Hilborn R, Maunder MN, Kim SW (2003) Effects of alternative control rules on the conflict between a fishery and a threatened sea lion (Phocarctos hookeri). Can J Fish Aquat Sci 60:527–541

    Article  Google Scholar 

  • Breen PA, Fu D, Gilbert DJ (2010) Sea lion population modelling and management procedure evaluations. Final research report for project SAP2008/14, Objective 2, New Zealand Ministry of Fisheries

  • Childerhouse S, Gales N (1998) Historical and modern distribution and abundance of the New Zealand sea lion Phocarctos hookeri. N Z J Zool 25:1–16

    Article  Google Scholar 

  • Childerhouse S, Hamer D, Maloney A, Michael S, Donnelly D, Schmitt N (2014) Preliminary report for CSP project 4522 New Zealand sea lion ground component 2013/14. New Zealand Department of Conservation. http://www.doc.govt.nz/Documents/conservation/marine-and-coastal/marine-conservation-services/pop-2013-01-preliminary-report-nz-sea-lion-auckland-islands-2014.pdf

  • Chilvers BL (2008) New Zealand sea lions Phocarctos hookeri and squid trawl fisheries: bycatch problems and management options. Endanger Species Res 5:193–204

    Article  Google Scholar 

  • Chilvers BL (2012) Population viability analysis of New Zealand sea lions, Auckland Islands, New Zealand’s sub-Antarctics: assessing relative impacts and uncertainty. Polar Biol 35:1607–1615

    Article  Google Scholar 

  • Collins CJ, Rawlence NJ, Worthy TH, Scofield RP, Tennyson AJD, Smith I, Knapp M, Waters JM (2013) Pre-human New Zealand sea lion (Phocarctos hookeri) rookeries on mainland New Zealand. J R Soc N Z 44:1–16

    Article  Google Scholar 

  • Collins CJ, Rawlence NJ, Prost S, Anderson CNK, Knapp M, Scofield RP, Robertson BC, Smith I, Matisoo-Smith EA, Chilvers BL, Waters JM (2014) Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proc R Soc B. doi:10.1098/rspb.2014.0097

    Google Scholar 

  • Curtis C, Stewart BS, Karl SA (2011) Genetically effective population sizes of Antarctic seals estimated from nuclear genes. Conserv Genet 12:1435–1446

    Article  Google Scholar 

  • Dallas JF (1992) Estimation of microsatellite mutation-rates in recombinant inbred strains of mouse. Mamm Genome 3:452–456

    Article  CAS  PubMed  Google Scholar 

  • DeGiorgio M, Rosenberg NA (2009) An unbiased estimator of gene diversity in samples containing related individuals. Mol Biol Evol 26:501–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Gales N (2008) Phocarctos hookeri. In: IUCN 2013, IUCN SSC Pinniped Specialist Group, IUCN red list of threatened species. Version 2013.1. www.iucnredlist.org

  • Gelatt T, Lowry L (2008) Various otariid species In: IUCN 2012, IUCN SSC Pinniped Specialist Group, IUCN red list of threatened species. Version 2012.2. www.iucnredlist.org

  • Geschke K, Chilvers BL (2010) Managing big boys: a case study on remote anaesthesia and satellite tracking of adult male New Zealand sea lions (Phocarctos hookeri). Wildl Res 36:666–674

    Article  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25:438–449

    Article  PubMed  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Barlett Publishers, UK

    Google Scholar 

  • Hilton GM, Thompson DR, Sagar PM, Cuthbert RJ, Cherel Y, Bury S (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob Change Biol 12:611–625

    Article  Google Scholar 

  • Hirons AC, Schell DM, Finney BP (2001) Temporal records of δ13C and δ15 N in North Pacific pinnipeds: inferences regarding environmental change and diet. Oecologia 129:591–601

    Article  CAS  PubMed  Google Scholar 

  • Jaeger A, Cherel Y (2011) Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the Southern Indian Ocean. PLoS ONE 6:e16484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lalas C, Bradshaw CJA (2001) Folklore and chimerical numbers: Review of a millennium of interaction between fur seals and humans in the New Zealand region. N Z J Mar Freshw Res 35:477–497

    Article  Google Scholar 

  • Le Boeuf BJ (1991) Pinniped mating systems on land, ice and in the water: emphasis on the Phocidae. In: Renouf D (ed) Behavior of pinnipeds. Chapman and Hall, London, pp 45–65

    Chapter  Google Scholar 

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manag 69:1385–1399

    Article  Google Scholar 

  • Lehmann T, Hawley WA, Grebert H, Collins FH (1998) The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15:264–276

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Maloney A, Chilvers BL, Haley M, Muller CG, Roe W, Debski I (2009) Distribution, pup production and mortality of New Zealand sea lion Phocarctos hookeri on Campbell Island, 2008. N Z J Ecol 33:97–105

    Google Scholar 

  • Newsome SD, Etnier MA, Kurle CM, Waldbauer JR, Chamberlain CP, Koch PL (2007) Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: isotopic analysis of northern fur seal teeth. MEPS 332:211–224

    Article  CAS  Google Scholar 

  • Osborne AJ, Zavodna M, Chilvers BL, Robertson BC, Negro SS, Kennedy MA, Gemmell NJ (2013) Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection. Heredity 111:44–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Robertson BC, Chilvers BL (2011) New Zealand sea lions Phocarctos hookeri possible causes of population decline. Mamm Rev 41:253–275

    Article  Google Scholar 

  • Roux JP (1987) Recolonization processes in the subantarctic fur seal, Arctocephalus tropicalis, on Amsterdam Island. Status, biology, and ecology of fur seals. NOAA Tech Rep NMFS 51:189–194

    Google Scholar 

  • Ruegg K, Anderson EC, Baker CS, Vant M, Jackson J, Palumbi SR (2010) Are Antarctic minke whales unusually abundant because of 20th century whaling? Mol Ecol 19:281–291

    Article  PubMed  Google Scholar 

  • Schwartz MK, Tallmon DA, Luikart G (1998) Review of DNA-based census and effective population size estimators. Anim Conserv 1:293–299

    Article  Google Scholar 

  • Stewart-Sinclair P (2013) The role of long-term diet change in the decline of the New Zealand sea lion population. Dissertation, Massey University

  • Wang J (2005) Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc B 360:1395–1409

    Article  CAS  Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (1989) Sampling properties of gene diversity. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 23–42

    Google Scholar 

Download references

Acknowledgments

I thank Amelie Auge, Catherine Collins, Nicolas Dussex, Catherine Grueber and Fiona Robertson for helpful discussion and three reviewers for helpful comments on the manuscript. This research was supported by funding from the New Zealand Department of Conservation (Grant No. 4219) and Department of Zoology, University of Otago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Robertson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, B.C. Is management limiting the recovery of the New Zealand sea lion Phocarctos hookeri?. Polar Biol 38, 539–546 (2015). https://doi.org/10.1007/s00300-014-1619-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1619-2

Keywords

Navigation