Skip to main content

Advertisement

Log in

Climate change and bird impact as drivers of High Arctic pond deterioration

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The environmental history since the end of the Little Ice Age of the bird-influenced pond Fugledammen (Hornsund, Svalbard, 77°N) was inferred from a 1-m sediment core using paleolimnological methods. The aim was to track long-term environmental changes and to evaluate the limnological consequences of catchment development in this extremely sensitive landscape. A special focus is given to the impacts of climate change and the observed increase in bird populations in the catchment. The late nineteenth century was characterized by littoral scraping/filtering Cladocera together with vegetation-associated chironomids. The invertebrate community became less diverse towards the twentieth century. Planktonic filter-feeder cladocerans replaced the littoral taxa and collector–gatherers became the most abundant chironomid feeding group. In the more recent sediment layers, invertebrate diversity decreased further but the number of individuals (biomass) increased. Daphnia showed a progressive increase that is typical for similar Arctic ponds in Svalbard, where nutrient loading has increased due to growing bird populations in the catchment. The decreases in vegetation-associated invertebrates, biodiversity, and functional diversity suggest that turbidity has increased and oxygen availability and light penetration decreased in the lake. The paleoecological record is in agreement with the sediment physical and geochemical evidence, indicating that in-lake productivity has strongly increased towards the present. These changes are concurrent with the recent climate warming in Svalbard suggesting that, in addition to longer ice-free season and increased water temperature, the increased air temperatures have various indirect catchment-mediated influences on the aquatic community through changes in bird-population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abnizova A, Young KL (2010) Sustainability of High Arctic ponds in a polar desert environment. Arctic 63:67–84

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Basin analysis, coring, and chronological techniques, tracking environmental change using lake sediments, vol 1. Springer, Dordrecht, pp 171–203

    Chapter  Google Scholar 

  • Bertilsson S, Hansson L-A, Graneli W, Philibert A (2003) Size-selective predation on pelagic microorganisms in Arctic freshwaters. J Plankton Res 25:621–632

    Article  Google Scholar 

  • Bouchard F, Turner KW, MacDonald LA, Deakin C, White H, Farquharson N, Medeiros AS, Wolfe BB, Hall RI, Pienitz R, Edwards TWD (2013) Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophys Res Lett 40:6112–6117

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2004) The dynamics of Chironomidae (Insecta: Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. J Paleolimnol 31:483–498

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association

  • Christoffersen K (2001) Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia 442:223–229

    Article  Google Scholar 

  • Côté G, Pienitz R, Velle G, Wang X (2010) Impact of geese on the limnology of lakes and ponds from Bylot Island (Nunavut, Canada). Int Rev Hydrobiol 95:105–129

    Article  Google Scholar 

  • D’Andrea WJ, Vaillencourt DA, Balascio NL, Werner A, Roof SR, Retelle M, Bradley RS (2012) Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40:1007–1010

    Article  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248

    CAS  Google Scholar 

  • Frey DG (1964) Remains of animals in Quaternary lake and bog sediments and their interpretation. Ergeb Limnol 2:1–114

    Google Scholar 

  • Fritz SC, Anderson NJ (2013) The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49:349–362

    Article  Google Scholar 

  • Goulden CE (1971) Environmental control of the abundance and distribution of the chydorid Cladocera. Limnol Oceanogr 16:320–331

    Article  Google Scholar 

  • Hampton SE, Izmest E, Lyubov R, Moore MV, Katz SL, Dennis B, Silow EA (2008) Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Glob Chang Biol 14:1947–1958

    Article  PubMed Central  Google Scholar 

  • Heiri O, Brooks SJ, Birks HJB, Lotter AF (2011) A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3445–3456

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in the coupled model intercomparison project. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Irvine K, Moss B, Balls H (1989) The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshw Biol 22:89–107

    Article  Google Scholar 

  • Jeppesen E, Christoffersen K, Landkildehus F, Lauridsen T, Amsinck SL, Riget F, Søndergaard M (2001) Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442:329–337

    Article  Google Scholar 

  • Kansanen P, Jaakkola T, Kulmala S, Suutarinen R (1991) Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia 222:121–140

    Article  CAS  Google Scholar 

  • Keatley BE, Douglas MSV, Blais JM, Mallory ML, Smol JP (2009) Impacts of seabird-driven nutrients on water quality and diatom assemblages from Cape Vera, Devon Island, Canadian Arctic. Hydrobiologia 621:191–205

    Article  CAS  Google Scholar 

  • Kultti S, Nevalainen L, Luoto TP, Sarmaja-Korjonen K (2011) Subfossil chydorid (Cladocera, Chydoridae) ephippia as paleoenvironmental proxies: evidence from boreal and subarctic lakes in Finland. Hydrobiologia 676:23–37

    Article  Google Scholar 

  • Laing TE, Pienitz R, Payette S (2002) Evaluation of limnological responses to recent environmental change and caribou activity in the Rivière George region, northern Québec, Canada. Arct Antarct Alp Res 34:454–464

    Article  Google Scholar 

  • Latour PB, Machtans CS, Beyersbergen GW (2005) Shorebird and passerine abundance and habitat use at a High Arctic breeding site: Creswell Bay, Nunavut. Arctic 58:55–65

    Google Scholar 

  • Luoto TP (2009) An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Ann Zool Fennici 46:259–270

    Article  Google Scholar 

  • Luoto TP (2010) Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecol Monogr 80:303–329

    Article  Google Scholar 

  • Luoto TP, Nevalainen L (2011) Inferring reference conditions of hypolimnetic oxygen for deteriorated Lake Mallusjärvi in the cultural landscape of Mallusjoki, southern Finland using fossil midge assemblages. Water Air Soil Pollut 217:663–675

    Article  CAS  Google Scholar 

  • Luoto TP, Ojala AEK (2014) Paleolimnological assessment of ecological integrity and eutrophication history for Lake Tiiläänjärvi (Askola, Finland). J Paleolimnol 51:455–468

    Article  Google Scholar 

  • Luoto TP, Nevalainen L, Kubischta F, Kultti S, Knudsen KL, Salonen V-P (2011) Late quaternary ecological turnover in high arctic Lake Einstaken, Nordaustlandet, Svalbard (80° N). Geogr Ann Ser A Phys Geogr 93:337–354

    Article  Google Scholar 

  • Luoto TP, Salonen V-P, Larocque-Tobler I, Pienitz R, Hausmann S, Guyard H, St-Onge G (2013) Pro- and postglacial invertebrate communities of Pingualuit Crater Lake, Nunavik (Canada), and their paleoenvironmental implications. Freshw Sci 32:951–963

    Article  Google Scholar 

  • Luoto TP, Brooks SJ, Salonen V-P (2014) Ecological responses to climate change in a bird-impacted High Arctic pond (Nordaustlandet, Svalbard). J Paleolimnol 51:87–97

    Article  Google Scholar 

  • MacDonald LA, Farquharson N, Hall RI, Wolfe BB, Macrae ML, Sweetman JN (2014) Avian-driven modification of seasonal carbon cycling at a tundra pond in the Hudson Bay Lowlands (northern Manitoba, Canada). Arct Antarct Alp Res 46:206–217

    Article  Google Scholar 

  • Marsz AA, Styszyńska A (eds) (2013) Climate and climate change at Hornsund Svalbard. Gdynia Maritime University, Gdynia, p 402

    Google Scholar 

  • Michelutti N, Keatley BE, Brimble S, Blais JM, Liu H, Douglas MSV, Mallory ML, MacDonald RW, Smol JP (2009) Seabird-driven shifts in Arctic pond ecosystems. Proc R Soc Lond B Biol Sci 276:591–596

    Article  Google Scholar 

  • Michelutti N, Mallory ML, Blais JM, Douglas MSV, Smol JP (2011) Chironomid assemblages from seabird-affected High Arctic ponds. Polar Biol 34:799–812

    Article  Google Scholar 

  • Moe B, Stempniewicz L, Jakubas D, Angelier F, Chastel O, Dinessen F, Gabrielsen GW, Hanssen F, Karnovsky NJ, Rønning B, Welcker J, Wojczulanis-Jakubas K, Bech C (2009) Climate change and phenological responses of two seabird species breeding in the high-Arctic. Mar Ecol Prog Ser 393:235–246

    Article  Google Scholar 

  • Nevalainen L, Luoto TP (2013) Limnological deterioration forces community and phenotypic changes in Cladocera: tracking eutrophication of Mallusjärvi, a lake in southern Finland. Boreal Environ Res 18:209–222

    Google Scholar 

  • Nevalainen L, Luoto TP, Kultti S, Sarmaja-Korjonen K (2013) Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. J Biogeogr 40:1548–1559

    Article  Google Scholar 

  • Nevalainen L, Ketola M, Korosi JB, Manca M, Kurmayer R, Koinig K, Psenner R, Luoto TP (2014) Zooplankton (Cladocera) species turnover and long-term decline of Daphnia in two high mountain lakes in the Austrian Alps. Hydrobiologia 722:75–91

    Article  CAS  Google Scholar 

  • Pienitz R, Douglas MSV, Smol JP (eds) (2004) Long-term environmental change in Arctic and Antarctic Lakes. Springer, Berlin

    Google Scholar 

  • Quinlan R, Douglas MSV, Smol JP (2005) Food web changes in arctic ecosystems related to climate warming. Glob Chang Biol 11:1381–1386

    Article  Google Scholar 

  • Rautio M, Nevalainen L (2013) Cladocera. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 271–280

    Chapter  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Blackwell Publishing, Hoboken

    Google Scholar 

  • Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in High Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Bronwyn EK, Laing TE, Michelutti N, Nazarova N, Nyman M, Paterson AM, Perren P, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Straile D, Adrian R, Schindler DE (2012) Uniform temperature dependency in the phenology of a keystone herbivore in lakes of the Northern Hemisphere. PLoS ONE 7:e45497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil cladocera from central and northern Europe. Friends of the Lower Vistula Society, Wicie

    Google Scholar 

  • Unckless RL, Makarewicz JC (2007) The impact of nutrient loading from Canada Geese (Branta canadensis) on water quality, a mesocosm approach. Hydrobiologia 586:393–401

    Article  CAS  Google Scholar 

  • Van Hove P, Belzile C, Gibson JAE, Vincent WF (2006) Coupled landscape—lake evolution in High Arctic Canada. Can J Fish Aquat Sci 43:533–546

    Google Scholar 

  • Woo MK, Young KL, Brown L (2006) High Arctic patchy wetlands: hydrologic variability and their sustainability. Phys Geogr 27:297–307

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a contribution to the QUAL project funded by the Academy of Finland (A.E.K. Ojala, Grant# 259343). Personal funding for T.P. Luoto was also provided by the Academy of Finland (ILMAVEIVI-project, Grant# 250343). We are grateful for the three reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomi P. Luoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luoto, T.P., Oksman, M. & Ojala, A.E.K. Climate change and bird impact as drivers of High Arctic pond deterioration. Polar Biol 38, 357–368 (2015). https://doi.org/10.1007/s00300-014-1592-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1592-9

Keywords

Navigation