Skip to main content
Log in

Molecular cloning, expression and characterisation of Afp4, an antifreeze protein from Glaciozyma antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antifreeze proteins (AFPs) are proteins with affinity towards ice and contribute to the survival of psychrophiles in subzero environment. Limited studies have been conducted on how AFPs from psychrophilic yeasts interact with ice. In this study, we describe the functional properties of an antifreeze protein from a psychrophilic Antarctic yeast, Glaciozyma antarctica. A cDNA encoding the antifreeze protein, AFP4, from G. antarctica PI12 was amplified from the mRNA extracted from cells grown at 4 °C. Sequence characterisation of Afp4 showed high similarity to fungal AFPs from Leucosporidium sp. AY30, LeIBP (93 %). The 786-bp cDNA encodes a 261-amino-acid protein with a theoretical pI of 4.4. Attempts to produce the recombinant Afp4 in Escherichia coli resulted in the formation of inclusion bodies (IB). The IB were subsequently denatured and refolded by dilution. Gel filtration confirmed that the refolded recombinant Afp4 is monomeric with molecular mass of ~25 kDa. Thermal hysteresis (TH) and recrystallisation inhibition assays confirmed the function of Afp4 as an antifreeze protein. In the presence of Afp4, ice crystals were modified into hexagonal shapes with TH values of 0.08 °C and smaller ice grains were observed compared with solutions without AFP. Structural analyses via homology modelling showed that Afp4 folds into β-helices with three distinct faces: a, b and c. Superimposition analyses predicted the b-face as the ice-binding surface of Afp4, whereby the mechanism of interaction is driven by hydrophobic interactions and the flatness of surface. This study may contribute towards an understanding of AFPs from psychrophilic yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamczak R, Porollo A, Meller J (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins Struct Funct Bioinform 59:467–475

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Amir G, Rubinsky B, Kassif Y, Horowitz L, Smolinsky AK, Lavee J (2003) Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins: an electron microscopy study. Eur J Cardiothorac Surg 24:292–297

    Article  PubMed  Google Scholar 

  • Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33:105–117

    Article  PubMed  CAS  Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Biegert A, Mayer C, Remmert M, Söding J, Lupas AN (2006) The MPI bioinformatics toolkit for protein sequence analysis. Nucleic Acids Res 34:W335–W339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boo S, Wong C, Rodrigues K, Najimudin N, Murad A, Mahadi N (2013) Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 36:381–389

    Article  Google Scholar 

  • Bowie J, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Christner B (2010) Bioprospecting for microbial products that affect ice crystal formation and growth. Appl Microbiol Biotechnol 85:481–489

    Article  PubMed  CAS  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond 357:927–935

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2001) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 15:5.6.1–5.6.30

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. In: Russell FD (ed) Methods in enzymology. Academic Press, pp 418–27

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  PubMed  CAS  Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Biochem J 411:171–180

    Article  PubMed  CAS  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA 108:7363–7367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel D, Bioroch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocol handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–402

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  PubMed  CAS  Google Scholar 

  • Hashim N, Bharudin I, Nguong D, Higa S, Bakar F, Nathan S, Rabu A, Kawahara H, Illias R, Najimudin N, Mahadi N, Murad A (2013) Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17:63–73

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181

    Article  CAS  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27:101–106

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H, Iwanaka Y, Higa S, Muryoi N, Sato M, Honda M, Omura H, Obata H (2007) A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. Cryoletters 28:39–49

    PubMed  CAS  Google Scholar 

  • Kim H, Lee J, Do H, Jung W (2014) Production of antifreeze proteins by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Heidelberg, pp 259–280

    Chapter  Google Scholar 

  • Knight CA, Driggers E, DeVries AL (1993) Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J 64:252–259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci USA 109:9360–9365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ (2012) Structural basis for antifreeze activity of ice-binding protein from Arctic yeast. J Biol Chem 287:11460–11468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Melo F, Sali A (2007) Fold assessment for comparative protein structure modeling. Protein Sci 16:2412–2426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MWF, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Park KS, Do H, Lee JH, Park SI, Kim EJ, Kim S-J, Kang S-H, Kim HJ (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64:286–296

    Article  PubMed  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Ramli A, Mahadi N, Shamsir M, Rabu A, Joyce-Tan K, Murad A, Illias R (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7:e35968

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49–57

    Article  PubMed  CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Sharp KA (2011) A peek at ice binding by antifreeze proteins. Proc Natl Acad Sci USA 108:7281–7282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431

    Article  PubMed  CAS  Google Scholar 

  • Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein ice interaction. Structure 4:1325–1337

    Article  PubMed  Google Scholar 

  • Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41:776–784

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tsvetkova NM, Phillips BL, Krishnan VV, Feeney RE, Fink WH, Crowe JH, Risbud SH, Tablin F, Yeh Y (2002) Dynamics of antifreeze glycoproteins in the presence of ice. Biophys J J82:464–473

    Article  Google Scholar 

  • Uhlig C, Kabisch J, Palm GJ, Valentin K, Schweder T, Krell A (2011) Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae). Cryobiology 63:220–228

    Article  PubMed  CAS  Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28:57–82

    Article  PubMed  CAS  Google Scholar 

  • Wu DW, Duman JG, Cheng C-HC, Castellino FJ (1991) Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Phys B 161:271–278

    Article  CAS  Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang H, Wang L (2007) Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Res Int 40:763–769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, under the research grants 10-05-16-MB002 and 07-05-MGI-GMB014. We thank Professor William J. Broughton for critical reading the manuscript and helpful comments. We acknowledge support given by the Australian Antarctic Division and the Malaysian Antarctic Research Programme (MARP) of the Academy of Science, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Munir Abdul Murad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, N.H.F., Sulaiman, S., Abu Bakar, F.D. et al. Molecular cloning, expression and characterisation of Afp4, an antifreeze protein from Glaciozyma antarctica . Polar Biol 37, 1495–1505 (2014). https://doi.org/10.1007/s00300-014-1539-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1539-1

Keywords

Navigation