Skip to main content
Log in

Fledging success of little auks in the high Arctic: do provisioning rates and the quality of foraging grounds matter?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Long-lived birds often face a dilemma between self-maintenance and reproduction. In order to maximize fitness, some seabird parents alternate short trips to collect food for offspring with long trips for self-feeding (bimodal foraging strategy). In this study, we examined whether temporal and spatial variation in the quality of foraging grounds affect provisioning and fledging success of a long-lived, bimodal forager, the little auk (Alle alle), the most abundant seabird species in the Arctic ecosystem. We predicted that an increase in sea surface temperature (SST), with an associated decrease in the preferred Arctic zooplankton prey, would increase foraging trip durations, decrease chick provisioning rates and decrease chick fledging success. Chick provisioning and survival were observed during three consecutive years (2008–2010) at two colonies with variable foraging conditions in Spitsbergen: Isfjorden and Magdalenefjorden. We found that a change in SST (range 1.6–5.4 °C) did not influence trip durations or provisioning rates. SST was, however, negatively correlated with the number of prey items delivered to a chick. Furthermore, provisioning rates did not influence chick’s probability to fledge; instead, SST was also negatively correlated with fledging probability. This was likely related to the prey availability and quality in the little auk’s foraging grounds. Our findings suggest that predicted warmer climate in the Arctic will negatively influence the ability of parents to provide their chicks, and consequently, the fledging prospects of little auk chicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrett RT, Chapdelaine G, Anker-Nilssen T, Mosbech A, Montevecchi WA, Reid JB, Veit RR (2006) Seabird numbers and prey consumption in the North Atlantic. ICES J Mar Sci 63:1145–1158

    Google Scholar 

  • Blachowiak-Samolyk K, Søreide JE, Kwasniewski S, Sundfjord A, Hop H, Falk-Petersen S, Hegseth EN (2008) Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79.81°N). Deep-Sea Res II 55:2210–2224

    Article  CAS  Google Scholar 

  • Brekke B, Gabrielsen GW (1994) Assimilation efficiency of adult kittiwakes and Brünnich’s guillemots fed capelin and arctic cod. Polar Biol 14:279–284

    Article  Google Scholar 

  • Brown ZW, Welcker J, Harding AMA, Walkusz W, Karnovsky NJ (2012) Divergent diving behaviour during short and long trips of a bimodal forager, the little auk Alle alle. J Avian Biol 43:215–226

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Chaurand T, Weimerskirch H (1994) The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63:275–282

    Article  Google Scholar 

  • Congdon BC, Krockenberger AK, Smithers BV (2005) Dual-foraging and coordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar Ecol Prog Ser 301:293–301

    Article  Google Scholar 

  • Daase M, Eiane K (2007) Mesozooplankton distribution in northern Svalbard waters in relation to hydrography. Polar Biol 30:969–981

    Article  Google Scholar 

  • Davoren GK, Montevecchi WA (2003) Consequences of foraging trip duration on provisioning behaviour and fledging condition of common murres Uria aalge. J Avian Biol 34:44–53

    Article  Google Scholar 

  • Duriez O, Weimerskirch H, Fritz H (2000) Regulation of chick provisioning in the thin-billed prion: an interannual comparison and manipulation of parents. Can J Zool 78:1275–1283

    Article  Google Scholar 

  • Falk-Petersen S, Pavlov V, Timofeev S, Sargent JR (2007) Climate variability and possible effects on arctic food chains: the role of Calanus. In: Ørbæk JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) Arctic-Alpine ecosystems and people in a changing environment. Springer, Berlin, pp 147–166

    Chapter  Google Scholar 

  • Fauchald P (2009) Spatial interaction between seabirds and prey: review and synthesis. Mar Ecol Prog Ser 463(391):139–151

    Article  Google Scholar 

  • Golet GH, Kuletz KJ, Roby DD, Irons DB (2000) Adult prey choice affects chick growth and reproductive success in pigeon guillemots. Auk 117:82–91

    Article  Google Scholar 

  • Grandeiro JP, Nunes M, Silva MC, Furness RW (1998) Flexible foraging strategy of Cory’s shearwater Calonectris diomedea, during chick rearing period. Anim Behav 56:1169–1176

    Article  Google Scholar 

  • Grémillet D, Welcker J, Karnovsky NJ, Walkusz W, Hall ME, Fort J, Brown ZW, Speakman JR, Harding AMA (2012) Little auks buffer the impact of current Arctic climate change. Mar Ecol Prog Ser 454:197–206

    Article  Google Scholar 

  • Harding AMA, van Pelt TI, Lifjeld JT, Mehlum F (2004) Sex differences in little auk Alle alle parental care: transition from biparental to paternal-only care. Ibis 146:642–651

    Article  Google Scholar 

  • Hirche HJ, Hagen W, Mumm N, Richter C (1994) The northeast water polynya, Greenland Sea. III. Mesozooplankton and makrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biol 14:491–503

    Article  Google Scholar 

  • Hunt GL (1991) Occurrence of polar seabirds at sea in relation to prey concentrations and oceanographic factors. Polar Res 10:553–559

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Jakubas D, Wojczulanis-Jakubas K, Walkusz W (2007) Response of dovekie to changes in food availability. Waterbirds 30:421–428

    Article  Google Scholar 

  • Jakubas D, Gluchowska M, Wojczulanis-Jakubas K, Karnovsky NJ, Keslinka L, Kidawa D, Walkusz W, Boehnke R, Cisek M, Kwasniewski S, Stempniewicz L (2011) Foraging effort does not influence body condition and stress level in little auks. Mar Ecol Prog Ser 432:277–290

    Article  Google Scholar 

  • Jakubas D, Iliszko L, Wojczulanis-Jakubas K, Stempniewicz L (2012) Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol 35:73–81

    Article  Google Scholar 

  • Jakubas D, Trudnowska E, Wojczulanis-Jakubas K, Iliszko L, Kidawa D, Darecki M, Blachowiak Samolyk K, Stempniewicz L (2013) Foraging closer to the colony leads to faster growth in little auks. Mar Ecol Prog Ser 489:263–278

    Article  Google Scholar 

  • Kadin M, Österblom H, Hentati-Sundberg J, Olsson O (2012) Contrasting effects of food quality and quantity on a marine top predator. Mar Ecol Prog Ser 444:239–249

    Article  Google Scholar 

  • Karnovsky NJ, Kwasniewski S, Weslawski JM, Walkusz W, Beszczynska-Möller A (2003) Foraging behaviour of little auks in a heterogeneous environment. Mar Ecol Prog Ser 253:289–303

    Article  Google Scholar 

  • Karnovsky NJ, Harding AMA, Walkusz W, Kwasniewski S, Goszczko I, Wiktor J Jr, Routti H, Bailey A, McFadden L, Brown ZW, Beaugrand G, Grémillet D (2010) Foraging distributions of little auks Alle alle across the Greenland Sea: implications of present and future Arctic climate change. Mar Ecol Prog Ser 415:283–293

    Article  Google Scholar 

  • Kwasniewski S, Gluchowska M, Jakubas D, Wojczulanis-Jakubas K, Walkusz W, Karnovsky N, Blachowiak-Samolyk K, Cisek M (2010) The impact of different hydrographic conditions and zooplankton communities on provisioning little auks along the West coast of Spitsbergen. Prog Oceanogr 87:72–82

    Article  Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Motoda S (1985) Devices of simple plankton apparatus—VII. Bull Mar Sci 37:776–777

    Google Scholar 

  • Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ricklefs RE (1983) Some considerations on the reproductive energetics of pelagic seabirds. Stud Avian Biol 8:84–94

    Google Scholar 

  • Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830

    Article  Google Scholar 

  • Saloranta TM, Svendsen H (2001) Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998–2000. Polar Res 20:177–184

    Article  Google Scholar 

  • Schaffner FC (1990) Food provisioning by white-tailed tropicbird: effect on the development pattern of the chick. Ecology 71:375–390

    Article  Google Scholar 

  • Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2000) Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biol 23:510–516

    Article  Google Scholar 

  • Smith SL, Smith WO, Codispoti LA, Wilson DL (1990) Biological observations in the marginal ice zone of the east Greenland Sea. J Mar Res 43:693–717

    Article  Google Scholar 

  • Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res II 55:2225–2244

    Article  CAS  Google Scholar 

  • Stearns SC (1989) Trade-offs in life history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Steen H, Vogedes D, Broms F, Falk-Petersen S, Berge J (2007) Little auks (Alle alle) breeding in a High Arctic fjord system: bimodal foraging strategies as a response to poor food quality? Polar Res 26:118–125

    Article  Google Scholar 

  • Stempniewicz L (1981) Breeding biology of the little auk Plautus alle in the Hornsund region, Spitsbergen. Acta Ornithol 18:1–26

    Google Scholar 

  • Stempniewicz L (2001) Alle alle little auk. The Journal of the Birds of Western Palearctic, BWP Update, vol 3. Oxford University Press, Oxford, pp 175–201

  • Stempniewicz L, Blachowiak-Samolyk K, Weslawski JM (2007) Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario. Deep-Sea Res II 54:2934–2945

    Article  Google Scholar 

  • Stempniewicz L, Darecki M, Trudnowska E, Blachowiak-Samolyk K, Boehnke R, Jakubas D, Keslinka-Nawrot L, Kidawa D, Sagan S, Wojczulanis-Jakubas K (2013) Visual prey availability and distribution of foraging little auks (Alle alle) in the shelf waters of West Spitsbergen. Polar Biol 36:949–955

    Article  Google Scholar 

  • Trudnowska E, Szczucka J, Hoppe L, Boehnke R, Hop H, Blachowiak-Samolyk K (2012) Multidimensional zooplankton observations on the northern West Spitsbergen Shelf. J Mar Syst 98–99:18–25

    Article  Google Scholar 

  • Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869

    Article  Google Scholar 

  • Walkusz W, Kwasniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Weslawski JM (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res 28:254–281

    Article  Google Scholar 

  • Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenot-Chaillet F, Hindermeyer X, Judas J (1994) Alternate long and short foraging trips in pelagic seabird parents. Anim Behav 47:472–476

    Article  Google Scholar 

  • Weimerskirch H, Chastel O, Cherel Y, Henden J-A, Tveraa T (2001) Nest attendance and foraging movements of northern fulmars rearing chicks at Bjørnøya Barents Sea. Polar Biol 24:83–88

    Article  Google Scholar 

  • Weimerskirch H, Ancel A, Caloin M, Zahariev A, Spagiari J, Kersten M, Chastel O (2003) Foraging efficiency and adjustment of energy expenditure in a pelagic seabird provisioning its chick. Anim Behav 72:500–508

    Google Scholar 

  • Welcker J, Harding AMA, Karnovsky NJ, Steen H, Strøm H, Gabrielsen GW (2009a) Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J Avian Biol 40:388–399

    Article  Google Scholar 

  • Welcker J, Steen H, Harding AMA, Gabrielsen GW (2009b) Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis 151:502–513

    Article  Google Scholar 

  • Welcker J, Beiersdorf A, Varpe Ø, Steen H (2012) Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav Ecol 23:1372–1378

    Article  Google Scholar 

  • Weslawski JM, Koszteyn J, Kwasniewski S, Stempniewicz L, Malinga M (1999) Summer food resources of the little auk, Alle alle (L.) in the European Arctic seas. Pol Polar Res 20:387–403

    Google Scholar 

  • Weydmann A, Kwasniewski S (2008) Distribution of Calanus populations in a glaciated fjord in the Arctic (Hornsund, Spitsbergen)—the interplay between biological and physical factors. Polar Biol 31:1023–1035

    Article  Google Scholar 

  • Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54

    Article  Google Scholar 

  • Wojczulanis-Jakubas K, Jakubas D (2012) When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle alle). Auk 129:632–637

    Article  Google Scholar 

  • Wojczulanis-Jakubas K, Jakubas D, Karnovsky NJ, Walkusz W (2010) Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res 29:22–29

    Article  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Norway through the Norwegian Financial Mechanisms Project No. PNRF-234-AI-1/07(ALKEKONGE) and conducted under the permission of the Governor of Svalbard and Norwegian Animal Research Authority. We thank Rafał Boehnke for analysing chick diet data from Magdalenefjorden and Mateusz Barcikowski, Anika Beiersdorf, Eirik Grønningsæter, Aino Luukkonen, Atle Coward Markussen, Adam Nawrot, Jan Samołyk, Lech Stempniewicz, Tobias Stål and Mikko Vihtakari for their invaluable help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna E. H. Hovinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovinen, J.E.H., Wojczulanis-Jakubas, K., Jakubas, D. et al. Fledging success of little auks in the high Arctic: do provisioning rates and the quality of foraging grounds matter?. Polar Biol 37, 665–674 (2014). https://doi.org/10.1007/s00300-014-1466-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1466-1

Keywords

Navigation