Skip to main content

Advertisement

Log in

Characterization of sources and temporal variation in the organic matter input indicated by n-alkanols and sterols in sediment cores from Admiralty Bay, King George Island, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Antarctic continent is one of the most protected areas on the planet, but is dynamically responding to environmental change on a global scale. Change in the air temperature may affect the organic matter production in the area. Biomarkers such as sterols, n-alkanols and phytol in three sediment cores from Admiralty Bay, Antarctica, were determined to identify the type of organic matter, variation in input and possible relationship with general temperature changes over the past decades. The concentrations ranged from 0.91 to 13.99 μg g−1 (dry weight) of total sterols, 0.20–2.14 μg g−1 of total n-alkanols and 0.13–2.38 μg g−1 of phytol. Cholest-5-en-3β-ol was the most abundant sterol. The fecal sterols, 5β-cholestan-3β-ol and 5β-cholestan-3α-ol, occurred at low concentration (<0.01–0.15 μg g−1), below the baseline values for this region. The lower carbon chain n-alkanols were more abundant, which suggested that algae, bacteria and zooplankton were the primary sources of the sedimentary organic matter. Phytol exhibited little variation across all of the cores, which appears to be the result of degradation. Variation in the concentration of compounds in one core was compared with the variation in mean air temperature (MAT) over time; this preliminary association showed a tendency toward increased concentration during the period in which the MAT was more elevated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril JM (2003) Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environ Pollut 129:31–37

    Article  Google Scholar 

  • Arzayus KM, Canuel EA (2004) Organic matter degradation in sediments of the York river estuary: effects of biological versus physical mixing. Geochim Cosmochim Acta 69:455–463

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the southern Ocean. Nature 432:100–103

    Article  CAS  PubMed  Google Scholar 

  • Bertolin ML, Schloss IR (2009) Phytoplankton production after the collapse of the Larsen A ice shelf, Antarctica. Polar Biol 32:1435–1446

    Article  Google Scholar 

  • Birgel D, Stein R, Hefter J (2004) Aliphatic lipids in recent sediments of the Fram Strait/Yermak Plateau (Arctic Ocean): composition, sources and transport processes. Mar Chem 88:127–160

    Article  CAS  Google Scholar 

  • Braun M, Gossmann H (2002) Glacial changes in the areas of Admiralty Bay and Potter Cove, King George Island, maritime Antarctica. In: Beyer L, Bolter M (eds) Geoecology and Antarctic ice-free coastal landscapes. Springer, Berlin, pp 75–89

    Chapter  Google Scholar 

  • Burns K, Brinkman D (2011) Organic biomarkers to describe the major carbon inputs and cycling of organic matter in the central Great Barrier Reef region. Estuar Coast Shelf S 93:132–141

    Article  CAS  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Org Geochem 20:563–577

    Article  CAS  Google Scholar 

  • Carreira RS, Ribeiro PV, Silva CEM, Farias CO (2009) Hydrocarbons and sterols as indicators of source and fate of organic matter in sediments from Sepetiba Bay, Rio de Janeiro. Quim Nova 32:1805–1811

    Article  CAS  Google Scholar 

  • Carreira RS, Araújo MP, Costa TLF, Spörl G, Knoppers BA (2011) Lipids in the sedimentary record as markers of the sources and deposition of organic matter in a tropical Brazilian estuarine-lagoon system. Mar Chem 127:1–11

    Article  CAS  Google Scholar 

  • Castaneda IS, Werne JP, Johnson TC, Powers LA (2011) Organic geochemical records from Lake Malawi (East Africa) of the last 700 years, part II: biomarker evidence for recent changes in primary productivity. Palaeogeogr Palaeoecol 303:140–154

    Article  Google Scholar 

  • Christodoulou S, Marty JC, Miquel JC et al (2009) Use of lipids and their degradation products as biomarkers for carbon cycling in the northwestern Mediterranean sea. Mar Chem 113:25–40

    Article  CAS  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS et al (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos T Roy Soc B 362:149–166

    Article  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG et al (2007) Marine pelagic ecosystems: the west Antarctic Peninsula. Philos Trans R Soc B 362:67–94

    Article  Google Scholar 

  • Faux JF, Belicka LL, Harvey HR (2011) Organic sources and carbon sequestration in Holocene shelf sediments from the western Arctic Ocean. Cont Shelf Res 31:1169–1179

    Article  Google Scholar 

  • Ferreira PAL, Ribeiro AP, Nascimento MG, Martins CC, Mahiques MM et al (2013) 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica. Sci Total Environ 443:505–510

    Article  CAS  PubMed  Google Scholar 

  • Ferron FA, Simões JC, Aquino FE, Setzer AW (2004) Air temperature time series for King George Island, Antarctica. Pesq Antarct Bras 4:155–169

    Google Scholar 

  • Green G, Nichols PD (1995) Hydrocarbons and sterols in marine sediments and soils at Davis station, Antarctica: a survey for human-derived contaminants. Antarct Sci 7:137–144

    Article  Google Scholar 

  • Harris CM, Carr R, Lorenz K, Jones S (2011) Important bird areas in Antarctica: Antarctic Peninsula, South Shetland Islands, South Orkney Islands—final report. Prepared for bird Life International and the Polar Regions Unit of the UK Foreign & Commonwealth Office. Environmental Research and Assessment Ltd. Cambridge

  • Huang J, Sun L, Huang W, Wang X, Wang Y (2010) The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold hills, East Antarctica. Polar Biol 33:1399–1406

    Article  Google Scholar 

  • Huang J, Liguang S, Wang X et al (2011) Ecosystem evolution of seal colony and the influencing factors in the 20th century on Fildes Peninsula, West Antarctica. J Environ Sci 23:1431–1436

    Article  CAS  Google Scholar 

  • Hudson ED, Parrish CC, Helleur RJ (2001) Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Mar Chem 76:253–270

    Article  CAS  Google Scholar 

  • Jaraula CMB, Brassel SC, Morgan-Kiss RM, Doran PT, Kenig F (2010) Origin and tentative identification of tri to pentaunsaturated ketones in sediments from Lake Fryxell, East Antarctica. Org Geochem 41:386–397

    Article  CAS  Google Scholar 

  • Jeng WL, Chen M (1995) Grain size effect on bound lipids in sediments off northeastern Taiwan. Org Geochem 23:301–310

    Article  CAS  Google Scholar 

  • Jeng WL, Han BC (1996) Sedimentary coprostanol in Kaohsiung Harbour and Tan-Shui Estuary, Taiwan. Mar Pollut Bull 28:494–499

    Article  Google Scholar 

  • Jones PD (1990) Antarctic temperatures over the present century: a study of the early expedition record. J Clim 3:1193–1203

    Article  Google Scholar 

  • Khim B, Yoon HI, Kim Y, Shin IC (2001) Late Holocene stable isotope chronology and meltwater discharge event in Maxwell and Admiralty bays, King George Island, Antarctica. Antarct Sci 13:167–173

    Article  Google Scholar 

  • Kopczynska EE (2008) Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands: 6 years of monitoring. Pol Polar Res 29:117–139

    Google Scholar 

  • Lange PK, Tenenbaum DR, Braga ES, Campos LS (2007) Microphytoplankton assemblages in shallow waters at Admiralty Bay (King George Island, Antarctica) during the summer 2002–2003. Polar Biol 30:1483–1492

    Article  Google Scholar 

  • Laureillard J, Saliot A (1993) Biomarkers in organic matter produced in estuaries: a case study of the Krka estuary (Adriatic Sea) using the sterol marker series. Mar Chem 43:247–261

    Article  CAS  Google Scholar 

  • Laureillard J, Pinturier L, Fillaux J et al (1997) Organic geochemistry of marine sediments of the subantarctic Indian Ocean sector: lipid classes—sources and fate. Deep-Sea Res Pt II 44:1085–1108

    Article  CAS  Google Scholar 

  • Lu X, Zhai S (2006) Distributions and sources of organic biomarkers in surface sediments from the Changjiang (Yangtze River) Estuary, China. Cont Shelf Res 26:1–14

    Article  Google Scholar 

  • Majewski W, Tatur A (2009) A new Antarctic foraminiferal species for detecting climate change in sub-recent glacier-proximal sediments. Antarct Sci 21:439–448

    Article  Google Scholar 

  • Martins CC, Venkatesan MI, Montone RC (2002) Sterols and linear alkylbenzenes in marine sediments from Admiralty Bay, King George Island, South Shetland Islands. Antarct Sci 14:244–252

    Article  Google Scholar 

  • Martins CC, Bícego MC, Rose NL, Taniguchi S et al (2010a) Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environ Pollut 158:192–200

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Bícego MC, Mahiques MM, Figueira RCL et al (2010b) Depositional history of sedimentary linear alkylbenzenes (LABs) in a large South American industrial coastal area (Santos Estuary, Southeastern Brazil). Environ Pollut 158:3355–3364

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Bícego MC, Mahiques MM, Figueira RCL et al (2011) Polycyclic aromatic hydrocarbons (PAHs) in a large South American industrial coastal area (Santos Estuary, Southeastern Brazil): sources and depositional history. Mar Pollut Bull 63:452–458

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Aguiar SN, Bícego MC et al (2012) Sewage organic markers in surface sediments around the Brazilian Antarctic station: results from the 2009/10 austral summer and historical tendencies. Mar Pollut Bull 64:2867–2870

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Aguiar SN, Wisnieski E et al (2014) Baseline concentrations of faecal sterols and assessment of sewage input into different inlets of Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 78:218–223

    Article  CAS  PubMed  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  CAS  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  CAS  Google Scholar 

  • Moline MA, Claustre H, Frazer TK et al (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980

    Article  Google Scholar 

  • Monien P, Schnetger B, Brumsack HR, Hass HC, Kuhn G (2011) A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica). Antarct Sci 23:255–267

    Article  Google Scholar 

  • Montone RC, Martins CC, Bícego MC, Taniguchi S et al (2010) Distribution of sewage input in marine sediments around a maritime Antarctic research station indicated by molecular geochemical indicators. Sci Total Environ 408:4665–4671

    Article  CAS  PubMed  Google Scholar 

  • Muri G, Wakeham SG, Pease TK, Faganeli J (2004) Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Org Geochem 35:1083–1093

    Article  CAS  Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647

    Article  Google Scholar 

  • Oliveira DRP, Cordeiro LGMS, Carreira RS (2013) Characterization of organic matter in cross-margin sediment transects of an upwelling region in the Campos Basin (SW Atlantic, Brazil) using lipid biomarkers. Biogeochemistry 112:311–327

    Article  CAS  Google Scholar 

  • Phleger CF, Nelson MM, Mooney B, Nichols PD (2000) Lipids of Antarctic salps and their commensal hyperiid amphipods. Polar Biol 23:329–337

    Article  Google Scholar 

  • Rakusa-Suszczewski S (1980) Environmental conditions and the functioning of Admiralty Bay (South Shetlands Islands) as part of near shore Antarctic ecosystem. Pol Polar Res 1:11–27

    Google Scholar 

  • Readman JW, Preston MR, Mantoura RFC (1986) An integrated technique to quantify sewage, oil and PAH pollution in estuarine and coastal environments. Mar Pollut Bull 17:298–308

    Article  CAS  Google Scholar 

  • Ribeiro AP, Figueira RCL, Martins CC et al (2011) Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 62:192–196

    Article  CAS  PubMed  Google Scholar 

  • Rontani JF, Volkman JK (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 34:1–35

    Article  CAS  Google Scholar 

  • Sander M, Balbão TC, Costa ES, Santos CR, Petry MV (2007) Decline of the breeding population of Pygoscelis antarctica and Pygoscelis adeliae on Penguin Island, South Shetland Antarctica. Polar Biol 30:651–654

    Article  Google Scholar 

  • Schloss IR, Abele D, Moreau S, Demers S et al (2012) Response of phytoplankton dynamics to 19 year (1991–2009) climate trends in Potter Cove (Antarctica). J Marine Syst 92:53–66

    Article  Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG, Meredith MP, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Setzer A, Romão M (2008) Atenção pesquisador: caiu a temperatura nos últimos 11 anos em Ferraz. XVI simpósio Brasileiro Sobre Pesquisa Antártica. Universidade de São Paulo, São Paulo, pp 7–8 (in Portuguese)

  • Sierakowski K (1991) Birds and mammals in the region of SSSI No. 8 in the season 1988/89 (South Shetlands, King George Island, Admiralty Bay). Pol Polar Res 12:25–54

    Google Scholar 

  • Simms AR, Milliken KT, Anderson JB, Wellner JS (2011) The marine record of deglaciation of the South Shetland Islands, Antarctica since the last glacial maximum. Quat Sci Rev 30:1583–1601

    Article  Google Scholar 

  • Skerratt JH, Nichols PD, McMeekin TA, Burton H (1995) Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Mar Chem 51:93–113

    Article  CAS  Google Scholar 

  • Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci USA 108:7625–7628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner J, Colwell S, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Venkatesan MI, Ruth E, Kaplan IR (1986) Coprostanols in Antarctic marine sediments: a biomarker for marine mammals and not human pollution. Mar Pollut Bull 17:554–557

    Article  CAS  Google Scholar 

  • Venkatesan MI, Santiago CA (1989) Sterols in oceans sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans. Mar Biol 102:431–437

    Article  CAS  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–100

    Article  CAS  Google Scholar 

  • Volkman JK (2005) Sterols and other triterpenoids: source, specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159

    Article  CAS  Google Scholar 

  • Volkman JK (2006) Lipid markers for marine organic matter. In: Volkman JK (ed) Handbook of environmental chemistry reactions and processes 2 (N). Springer, Berlin, pp 27–70 2

    Google Scholar 

  • Volkman JK, Revill AT, Holdsworth DG, Fredericks D (2008) Organic matter sources in an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes. Org Geochem 39:689–710

    Article  CAS  Google Scholar 

  • Wade TL, Cantillo AY (1994) Use of standards and reference materials in the measurement of chlorinated hydrocarbon residues. Chem Workb NOAA Tech Memo NOS ORCA 77:59

    Google Scholar 

  • Wakeham SG, Canuel EA (2006) Degradation and preservation of organic matter in sediments. In: Volkman JK (ed) Handbook of environmental chemistry reactions and processes 2 (N), vol 2. Springer, Berlin, pp 295–321

    Google Scholar 

  • Wang J, Wang Y, Wang X, Sun L (2007) Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years. Polar Biol 30:1475–1481

    Article  Google Scholar 

  • Xiong Y, Wu F, Fang J, Wang L, Li Y, Liao H (2010) Organic geochemical record of environmental changes in Lake Dianchi, China. J Paleolimnol 44:217–231

    Article  Google Scholar 

  • Yoon HI, Park BK, Kim Y, Kim D (2000) Glaciomarine sedimentation and its paleoceanographic implications along the fjord margins in the South Shetland Islands, Antarctica during the last 6000 years. Palaeogeogr Palaeocol 157:189–211

    Article  Google Scholar 

Download references

Acknowledgments

This work is resulted of PALEOANTAR project (Identification of abrupt climate changes in Antarctica during the Upper Quaternary through sedimentary record) supported by the Antarctic Brazilian Program (PROANTAR), the Secretaria da Comissão Interministerial para os Recursos do Mar (SECIRM), Ministério de Ciência, Tecnologia e Inovação (MCTI) and National Council for Scientific and Technological Development (CNPq) (Grant codes: 550014/2007-1 and 305763/2011-3 to C.C. Martins, 557044/2009-0 to M.M. Mahiques). We also thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) for a MSc scholarship to E.Wisnieski and for grant by Ciências do Mar-09/2009. We are grateful to R.S. Carreira [Department of Chemistry, Pontifícia Universidade Católica (PUC-RJ)] and M.C. Bernardes [Department of Geochemistry, Universidade Federal Fluminense (UFF)] for assistance with the preliminary evaluation of this article and the two anonymous reviewers for constructive comments which substantially improved the manuscript. This work contributes to the National Institute of Science and Technology for Environmental Research Antarctic (INCT–APA, CNPq 574018/2008-5 and FAPERJ E-16/170023/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César C. Martins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisnieski, E., Bícego, M.C., Montone, R.C. et al. Characterization of sources and temporal variation in the organic matter input indicated by n-alkanols and sterols in sediment cores from Admiralty Bay, King George Island, Antarctica. Polar Biol 37, 483–496 (2014). https://doi.org/10.1007/s00300-014-1445-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1445-6

Keywords

Navigation