Skip to main content
Log in

Bacterial diversity within five unexplored freshwater lakes interconnected by surface channels in East Antarctic Dronning Maud Land (Schirmacher Oasis) using amplicon pyrosequencing

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Schimacher Oasis, an ice-free plateau in East Antarctic Dronning Maud Land, consists of over 120 freshwater lakes. These lakes are connected largely through four major surface channels. The bacterial diversity in these lake ecosystems remains largely unexplored. In this study, we compared the bacterial diversity in five freshwater lakes (L42, L46, L47, L50, and L51) interconnected by two surface channels using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) method. We further compared the resultant bacterial composition from these five lakes with another freshwater lake in the Schirmacher Oasis, Lake Tawani(P), which is not connected through the same surface channels. Using bTEFAP, we differentiated nine different phyla with the phyla Proteobacteria (especially the class Alphaproteobacteria) and Bacteroidetes (the class Sphingobacteria) dominating in lakes interconnected by surface channel 1, while the phyla Chloroflexi and Firmicutes were highly abundant in lakes interconnected by surface channel 2. The operational taxonomic unit (OTU) network and Principle Coordinate Analysis (PCoA) plot based on unweighted UNIFRAC determined that the bacterial assemblages found in these five lakes are different than the bacterial composition residing in Lake Tawani(P). The distribution and the diversity of the bacterial communities in Schirmacher Oasis freshwater lakes that are connected through surface channels may provide an insight into the role of the extreme physico-chemical parameters that help shape microbially driven functional ecosystems in other oases on this icy continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam SI, Singh L, Dube S, Reddy GS, Shivaji S (2003) Psychrophilic Planococcus maitriensis sp. nov. from Antarctica. Syst Appl Microbiol 26:505–510

    Article  CAS  PubMed  Google Scholar 

  • Alam SI, Dixit A, Reddy GS, Dube S, Palit M, Shivaji S, Singh L (2006) Clostridium schirmacherense sp. nov., an obligately anaerobic, proteolytic, psychrophilic bacterium isolated from lake sediment of Schirmacher Oasis, Antarctica. Int J Syst Evol Microbiol 56:715–720

    Article  CAS  PubMed  Google Scholar 

  • Arnaud T, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmott A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. Microb Ecol 57:272–289

    Article  Google Scholar 

  • Bera SK (2004) Late Holocene palaeo-winds and climatic changes in the Eastern Antarctica as indicated by long-distance transported pollen-spores and local micro-biota in polar lake core sediments. Curr Sci India 86:1485–1488

    Google Scholar 

  • Bera SK (2006) Pollen analysis of the surface deposits and Holocene lake sediments of Schirmacher Oasis, Central Droning Maud Land, East Antarctica. Tech Publ Minist Earth Sci 18:191–204

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM, Pelletier E, Hirsch PR, Meyer F, Gilbert JA, Le Paslier D, Simonet P, Vogel TM (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6:1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431

    Article  Google Scholar 

  • Ellis-Evans JC, Laybourn-Parry J, Bayliss P, Perriss SJ (1998) Physical, chemical and microbial community characteristics of lakes of the Larsermann Hills, Continental Antarctica. Arch Fuer Hydrobiol 141:209–230

    CAS  Google Scholar 

  • Green WJ, Canfield DE (1984) Geochemistry of the Onyx River (wring Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochim Cosmochim Acta 48:2457–2467

    Article  CAS  Google Scholar 

  • Huang JP, Swain A, Ravindra R, Andersen DT, Bej AK (2013) Bacterial diversity of the rock-water interface in an East Antarctic freshwater ecosystem, Lake Tawani(P). Aquat Biosyst 9:4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingolfsson O (2004) Quaternary glacial and climate history of Antarctica. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology 3: part III: South America, Asia, Africa, Australia. Antarctica, Elsevier, NY, pp 3–43

    Chapter  Google Scholar 

  • Komarek J, Ruzicka J (1966) Freshwater algae from a lake in proximity of the Novolazarevskaja Station. Antarct Preslia 38:237–244

    Google Scholar 

  • Laluraj CM, Thamban M, Naik SS, Redkar BL, Chaturvedi A, Ravindra R (2010) Nitrate records of a shallow ice core from East Antarctica: atmospheric processes, preservation and climatic implications. The Holocene. doi:10.1177/0959683610374886

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  PubMed  Google Scholar 

  • Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Phil Trans Biol Sci 357:863–869

    Article  CAS  Google Scholar 

  • Laybourn-Parry J (2009) No place too cold. Science 324:1521–1522

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry J, Marchant HJ (1992) The microbial plankton of fresh-water lakes in the Vestfold Hills, Antarctica. Polar Biol 12:405–410

    Google Scholar 

  • Matondkar SGP, Gomes HR (1983) Biological studies on the ice shelf and in fresh water lakes at Princess Astrid Coast, Dronning Maud Land, Antarctica. In: Scientific Report—First Indian Expedition to Antarctica, Technical Publication No. 1. DOCD, New Delhi, pp 186–190

  • Mojib N, Bej AK, Hoover R (2008) Diversity and cold adaptation of microorganisms isolated from the Schirmacher Oasis, Antarctica. Proc SPIE 7097:70970K-2

    Google Scholar 

  • Mojib N, Huang JP, Hoover RB, Bej AK (2009) Diversity of bacterial communities in the lakes of Schirmacher Oasis, Antarctica. Proc SPIE 7441:74410J

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paech HJ, Stackebrandt W (1995) Geology. In: Bormann P, Fritzsche D (eds) The Schirmacher Oasis, Queen Maud Land, East Antarctica, and its surroundings. Justus Perthes Verlag, Gotha, pp 59–169

    Google Scholar 

  • Pandey KD, Shukla SP, Shukla PN, Giri DD, Singh JS, Singh P, Kashyap AK (2004) Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cell Mol Biol 50:575–584

    CAS  PubMed  Google Scholar 

  • Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng JF, Hugenholtz P, McSweeney CS, Morrison M (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci USA 107:14793–14798

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Foreman CM (2009) Lakes of Antarctica. In: Likens GE (ed) Encyclopedia of inland waters, vol 2. Elsevier Press, Oxford, pp 555–566

    Chapter  Google Scholar 

  • Ravindra R, Chaturvedi A, Beg MJ (2002) Melt Water Lakes of Schirmacher Oasis—their genetic aspects and classification. In: Sahoo D, Pandey PC (eds) Advances in marine and Antarctic science. APH Publishing Corporation, New Delhi, pp 301–313

    Google Scholar 

  • Richter W, Bormann P (1995) Hydrology. In: Bormann P, Fritzsche D (eds) The Schirmacher Oasis, Queen Maud Land, East Antarctica, and its surroundings. Justus Perthes Verlag, Gotha, pp 259–319

    Google Scholar 

  • Sengupta R, Qasim SZ (1983) Chemical studies on the ice shelf in a freshwater lake and in a polynya at Princess Astrid Coast, Dronning Maud Land, Antarctica. In: Scientific Report—First Indian Expedition to Antarctica, Technical Publication No. 1. DOCD, New Delhi, pp 62–68

  • Shannon CE, Weaver W (1964) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shaw J, Healy TR (1980) Morphology of the Onyx River system, McMurdo sound region, Antarctica. N Z J Geol Geophys 23:225–238

    Article  Google Scholar 

  • Shivaji S, Rao NS, Saisree L, Sheth V, Reddy GS, Bhargava PM (1989) Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shivaji S, Reddy GSN, Prasad RA, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536

    CAS  PubMed  Google Scholar 

  • Shivaji S, Kumari K, Kishore KH, Pindi PK, Rao PS, Srinivas TNR, Asthana R, Ravindra R (2011) Vertical distribution of bacteria in a lake sediment from Antarctica by culture-independent and culture-dependent approaches. Res Microbiol 162:191–203

    Article  CAS  PubMed  Google Scholar 

  • Singh SM, Gawas P, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci India 19:1388–1392

    Google Scholar 

  • Sinha R, Sharma C, Chauhan MS (2000a) Sedimentological and pollen studies of Lake Priyadarshini, East Antarctica. Palaeobot 49:1–8

    Google Scholar 

  • Sinha R, Navada SV, Chatterjee A, Kumar S, Mitra A, Nair AR (2000b) Hydrogen and oxygen isotopic analysis of Antarctic lake waters. Curr Sci India 78:992–995

    CAS  Google Scholar 

  • Stanish LF, Kohler TJ, Esposito RMM, Simmons BL, Nielsen UN, Wall DH, Nemergut DR, McKnight DM (2012) Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Can J Fish Aquat Sci 69:1405–1419

    Google Scholar 

  • Stanish LF, Bagshaw EF, McKnight DM, Fountain AG, Tranter M (2013) Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environ Res Lett 8:045006 (8pp). doi:10.1088/1748-9326/8/4/045006

  • Stones LF, O’Neill SP, Gonzalez A, Legg TM, Knelman J, McKnight DM, Spaulding S, Nemergut DR (2012) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02872.x

    Google Scholar 

  • Verlecar XN, Dhargalkar VK, Matondkar SGP (1996) Ecobiological studies of the freshwater lakes at Schirmacher Oasis, Antarctica. Twelfth Indian Expedition to Antarctica, Scientific Report 10:233–257

  • Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, Demaere MZ, Lauro FM, Cavicchioli R (2012) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev. doi:10.1111/1574-6976.12007

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Col. (IL) J.N. Pritzker ARNG (Retired), Tawani Foundation (Chicago) for supporting the Tawani 2008 International Antarctic Scientific Expedition; Marty Kress, VCSI, Inc./NASA; NASA’s Astrobiology grant program; 2008–2009 Maitri and Novolazarevskaya Station staffs; Maitri Cdrs. A. Chaturvedi, and Dr. P. Malhotra; former NCAOR director Dr. Rasik Ravindra, and Department of Biology, UAB for the support. We also thank John Delton Hanson of Research and Testing Laboratory, TX for assisting us with the bTEFAP of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Bej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J.P., Swain, A.K., Andersen, D.T. et al. Bacterial diversity within five unexplored freshwater lakes interconnected by surface channels in East Antarctic Dronning Maud Land (Schirmacher Oasis) using amplicon pyrosequencing. Polar Biol 37, 359–366 (2014). https://doi.org/10.1007/s00300-013-1436-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1436-z

Keywords

Navigation