Skip to main content

Advertisement

Log in

Antarctic nematode communities: observed and predicted responses to climate change

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The rapidly changing climate in Antarctica is impacting the ecosystems. Since records began, climate changes have varied considerably throughout Antarctica with both positive and negative trends in temperatures and precipitation observed locally. However, over the course of this century a more directional increase in both temperature and precipitation is expected to occur throughout Antarctica. The soil communities of Antarctica are considered simple with most organisms existing at the edge of their physiological capabilities. Therefore, Antarctic soil communities are expected to be particularly sensitive to climate changes. However, a review of the current literature reveals that studies investigating the impact of climate change on soil communities, and in particular nematode communities, in Antarctica are very limited. Of the few studies focusing on Antarctic nematode communities, long-term monitoring has shown that nematode communities respond to changes in local climate trends as well as extreme (or pulse) events. These results are supported by in situ experiments, which show that nematode communities respond to both temperature and soil moisture manipulations. We conclude that the predicted climate changes are likely to exert a strong influence on nematode communities throughout Antarctica and will generally lead to increasing abundance, species richness, and food web complexity, although the opposite may occur locally. The degree to which local communities respond will depend on current conditions, i.e., average temperatures, soil moisture availability, vegetation or more importantly the lack thereof, and the local species pool in combination with the potential for new species to colonize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell J, Frati F, Hogg I, Newsham N, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Adhikari BN, Wall DH, Adams BJ (2009) Desiccation survival in an Antarctic nematode: molecular analysis using expressed sequenced tags. BMC Genomics 10:69. doi:10.1186/1471-2164-10-69

    Article  PubMed  Google Scholar 

  • Adhikari BN, Wall DH, Adams BJ (2010) Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode. J Exp Biol 213:1803–1812

    Article  PubMed  CAS  Google Scholar 

  • Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morphol Syst 1:107–186

    Google Scholar 

  • Andrássy I (2008) On the male of the Antarctic nematode species, Plectus murrayi Yeates, 1970. J Nematode Morphol Syst 11:87–89

    Google Scholar 

  • Andrássy I, Gibson JAE (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. n. Polar Biol 30:669–678

    Article  Google Scholar 

  • Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, Virginia RA, Fountain AG (2010) Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol 33:897–907

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Cary SS, Adams BJ, Hacker AL, Aislabie JM (2006) Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct Sci 18:535–548

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008a) Persistent effects of a discrete climate event on a polar desert ecosystem. Glob Change Biol 14:2249–2261

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Adams BJ (2008b) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity ecosystem. Glob Change Biol 14:1734–1744

    Article  Google Scholar 

  • Bergström DM, Chown SL (1999) Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–477

    Article  PubMed  Google Scholar 

  • Bertler NAN, Barrett PJ, Mayewski PA, Fogt RL, Kreutz KJ, Shulmeister J (2004) El Nino suppresses Antarctic warming. Geophys Res Lett 31(15):L15207

    Article  Google Scholar 

  • Block W, Smith RIL, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484

    Article  PubMed  CAS  Google Scholar 

  • Bölter M, Blume H-P, Schneider D, Beyer L (1997) Soil properties and distribution of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol 18:295–304

    Article  Google Scholar 

  • Bracegirdle TJ, Connolley WM, Turner J (2008) Antarctic climate change over the twenty first century. J Geophys Res 133:D03103. doi:10.1029/2007JD008933

    Article  Google Scholar 

  • Brown IM, Wharton DA, Millar RB (2004) The influence of temperature on the life history of the Antarctic nematode Panagrolaimus davidi. Nematology 6:883–890

    Article  Google Scholar 

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391

    Article  Google Scholar 

  • Caldwell JR (1981) The Signy Island terrestrial reference sites: XIII. Population dynamics of the nematode fauna. Brit Antarct Surv B 54:33–46

    Google Scholar 

  • Chapin FS III, Grens K, Katsnelson A, Gawrylewski A, Zielinska E, Scheff J (2008) Climate change and the biosphere. Scientist 22:36–42

    Google Scholar 

  • Convey P (2003a) Maritime Antarctic climate change: signals from terrestrial biology. Antarct Res Ser 76:335–347

    Google Scholar 

  • Convey P (2003b) Soil faunal community response to environmental manipulation on Alexander Island, southern maritime Antarctic. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, the Netherlands, pp 74–78

    Google Scholar 

  • Convey P (2006) Antarctic climate change and its influence on terrestrial ecosystems. In: Bergström DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 253–272

    Chapter  Google Scholar 

  • Convey P (2008a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Convey P (2008b) Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic proceedings. Gateway Antarctica, Christchurch, pp 97–130

    Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10

    Google Scholar 

  • Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial climate amelioration. Eur J Soil Biol 38:255–259

    Article  Google Scholar 

  • Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  • Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17

    Article  Google Scholar 

  • Crowe JH, Hoekstra F, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520

    Article  PubMed  CAS  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystem: the West Antarctic Peninsula. Philos Trans R Soc B 362:67–94

    Article  Google Scholar 

  • Elberling B, Gregorich EG, Hopkins DW, Sparrow AD, Novis P, Greenfield LG (2006) Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol Biochem 38:3095–3106

    Article  CAS  Google Scholar 

  • Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971

    Article  Google Scholar 

  • Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine islands, Antarctic Peninsula. Arctic Alpine Res 26:290–296

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk P, Convey P, Skotnicki M, Bergström D (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Gooseff MN, Barrett JE, Doran PT, Fountain AG, Lyons WB, Parsons AN, Porazinska DL, Virginia RA, Wall DH (2003) Snowpack influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 35:91–99

    Article  Google Scholar 

  • Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Rapid recent salinity rise in three East Antarctic lakes. J Paleolimnol 36:385–406

    Article  Google Scholar 

  • Hogg ID, Cary SC, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491

    Article  PubMed  CAS  Google Scholar 

  • Huiskes A, Convey P, Bergström DM (2006) Trends in Antarctic terrestrial and limnetic ecosystems. In: Bergström DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 1–13

    Chapter  Google Scholar 

  • IPCC (2007) Climate change 2007: working group I: the physical science basis. IPCC, Geneva

    Google Scholar 

  • Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  • Kito K, Ohyama Y (2008) Rhabditid nematodes found from a rocky coast contaminated with treated waste water of Casey Station in East Antarctica, with a description of a new species of Dolichorhabditis Andrássy, 1983 (Nematoda: Rhabditidae). Zootaxa 1850:43–52

    Google Scholar 

  • Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L (2007) Simulated precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dynam 28:215–230

    Article  Google Scholar 

  • Lewis Smith RI, Ochyra R (2006) High altitude Antarctic soil propagule bank yields an exotic moss and potential colonist. J Hattori Bot Lab 100:325–331

    Google Scholar 

  • Lyons WB, Welch KA, Carey AE, Doran PT, Wall DH, Virginia RA, Fountain AG, Csatho BM, Tremper CM (2005) Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Ann Glaciol 40:200–206

    Article  CAS  Google Scholar 

  • Marion GM, Henry GHR, Freckman DW, Jones G, Jones MH, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32

    Article  Google Scholar 

  • Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151

    Article  CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobio S 6:218–231

    Article  CAS  Google Scholar 

  • Nielsen UN, Wall DH, Li G, Toro M, Adams BJ, Virginia RA (2011) Nematode communities of Byers Peninsula, Livingston Island, maritime Antarctica. Antarct Sci. doi:10.1017/S0954102011000174

  • Ochyra R, Bednarek-Ochyra H, Smith RIL (2008) New and rare moss species from the Antarctic. Nova Hedwigia 87:457–477

    Article  Google Scholar 

  • Overhoff A, Freckman DW, Virginia RA (1993) Life cycle of the microbivorous Antarctic Dry Valley nematode Scottnema lindsayae (Timm 1971). Polar Biol 13:151–156

    Article  Google Scholar 

  • Øvstedal DO, Smith RIL (2009) Further additions to the lichen flora of Antarctica and South Georgia. Nova Hedwigia 88:157–168

    Article  Google Scholar 

  • Parnikoza I, Convey P, Dykyy I, Trokhymets V, Milinevsky G, Tyschenko O, Inozemtseva D, Kozeretske I (2009) Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biol 15:1685–1693

    Article  Google Scholar 

  • Poage MA, Barrett JE, Virginia RA, Wall DH (2008) The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 40:119–128

    Article  Google Scholar 

  • Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574

    Google Scholar 

  • Powers LE, Ho M, Freckman DW, Virginia RA (1998) Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic Alpine Res 30:133–141

    Article  Google Scholar 

  • Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186

    Article  Google Scholar 

  • Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060

    Article  CAS  Google Scholar 

  • Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400

    Article  Google Scholar 

  • Sinclair BJ, Sjursen H (2001) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiologia 45:134–145

    Article  Google Scholar 

  • Sinclair BJ, Stevens MI (2006) Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: implications of climate change. Soil Biol Biochem 38:3158–3170

    Article  CAS  Google Scholar 

  • Smith RIL (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology. Academic Press, London

    Google Scholar 

  • Smith RIL (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • Sohlenius B, Boström S (2005) The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biol 28:439–448

    Article  Google Scholar 

  • Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–825

    Article  Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature 457:459–463

    Article  PubMed  CAS  Google Scholar 

  • Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369

    Article  PubMed  CAS  Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  PubMed  CAS  Google Scholar 

  • Tebaldi C, Smith RL, Nychka D, Mearns LO (2006) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Climate 18:1524–1540

    Article  Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899

    Article  PubMed  CAS  Google Scholar 

  • Treonis AM, Wall DH (2005) Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr Comp Biol 45:741–750

    Article  PubMed  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Turner J, Bindschadler R, Convey P, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP (2009) Antarctic climate change and the environment. Scientific Committee for Antarctic Research, Cambridge

    Google Scholar 

  • Ugolini FC, Bockheim JG (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1–8

    Article  CAS  Google Scholar 

  • Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531

    Article  Google Scholar 

  • Wall DH (2007) Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B 362:2291–2306

    Article  Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Wall DH, Lyons WB, Chown SL, Convey P, Howard-Williams C, Quesada A, Vincent WF (in press) Long term ecosystem networks to record change: an international imperative. Antarct Sci

  • Weiler CS, Penhale PA (1994) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic research series volume 62. American Geophysical Union, Washington

    Book  Google Scholar 

  • Wharton DA, Barclay S (1993) Anhydrobiosis in the free-living Antarctic nematode Panagrolaimus davidi (Nematoda, Rhabditida). Fund Appl Nematol 16:17–22

    Google Scholar 

  • Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387

    PubMed  Google Scholar 

  • Wright JC, Westh P, Ramløv H (1992) Cryptobiosis in Tardigrada. Biol Rev 67:1–29

    Article  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The US National Science Foundation (DEB 0344834, OPP 0423595 and ANT 0840979) supported this work. We also thank David Wharton and an anonymous referee for helpful comments on an earlier version of the manuscript.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe N. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, U.N., Wall, D.H., Adams, B.J. et al. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol 34, 1701–1711 (2011). https://doi.org/10.1007/s00300-011-1021-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1021-2

Keywords

Navigation