Skip to main content
Log in

Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E–150°E)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E–150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E–100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackley SF, Sullivan CW (1994) Physical controls on the development and characteristics of Antarctic sea ice biological communities—a review and synthesis. Deep Sea Res Part I Oceanogr Res Pap 41:1583–1604

    Article  Google Scholar 

  • Allison I, Brandt RE, Warren SG (1993) East Antarctic sea ice: albedo, thickness distribution, and snow cover. J Geophys Res 98:12417–12429

    Article  Google Scholar 

  • Arrigo KR (2003) Primary production in sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Scientific, Oxford, pp 143–183

    Google Scholar 

  • Arrigo K, Thomas D (2004) Large scale implications of sea ice biology in the Southern Ocean. Antarct Sci 16:471–586

    Article  Google Scholar 

  • Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397

    Article  PubMed  CAS  Google Scholar 

  • Arrigo KR, Robinson DH, Dunbar RB, Leventer AR, Lizotte MP (2003) Physical control of chlorophyll a, POC, and TPN distributions in the pack ice of the Ross Sea, Antarctica. J Geophys Res 108:3316. doi:3310.1029/2001JC001138

    Article  Google Scholar 

  • Belém AL (2002) Modeling physical and biological processes in Antarctic sea ice. Ph.D. thesis, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

  • Brandt RE, Warren SG, Worby AP, Grenfell TC (2005) Surface albedo of the Antarctic sea ice zone. J Clim 18:3606–3622

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C077004. doi:077010.071029/072007JC004564

    Article  Google Scholar 

  • Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996, updated 2006) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder [digital media]

  • Constable AJ, Nicol S, Strutton PG (2003) Southern Ocean productivity in relation to spatial and temporal variation in the physical environment. J Geophys Res 108:8079. doi:8010.1029/2001JC001270

    Article  Google Scholar 

  • Fitch DT, Moore JK (2007) Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone. J Geophys Res 112:C08006. doi:10.1029/2006JC004061

    Article  Google Scholar 

  • Fowler C (2003) Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors. National Snow and Ice Data Center, Boulder [digital media]

  • Fritsen CH, Lytle VI, Ackley SF, Sullivan CW (1994) Autumn bloom of Antarctic pack-ice algae. Science 266:782–784

    Article  PubMed  CAS  Google Scholar 

  • Fritsen CH, Ackley SF, Kremer JN, Sullivan CW (1998) Flood-freeze cycles and microalgal dynamics in Antarctic pack ice. In: Lizotte MP, Arrigo K (eds) Antarctic sea ice: biological processes, interactions and variability, vol 73. American Geophysical Union, Washington, DC, pp 1–21

    Google Scholar 

  • Frouin R, Pinker RT (1995) Estimating photosynthetically active radiation (PAR) at the Earth’s surface from satellite observations. Remote Sens Environ 51:98–107

    Article  Google Scholar 

  • Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in Antarctic pack ice and in ice-edge plankton. J Phycol 23:564–572

    Google Scholar 

  • Garrison DL, Jeffries MO, Gibson A, Coale SL, Neenan D, Fritsen C, Okolodkov YB, Gowing MM (2003) Development of sea ice microbial communities during autumn ice formation in the Ross Sea. Mar Ecol Prog Ser 259:1–15

    Article  CAS  Google Scholar 

  • Geddes JA, Moore GWK (2007) A climatology of sea ice embayments in the Cosmonaut Sea, Antarctica. Geophys Res Lett 34:L02505. doi:10.1029/2006GL027910

    Article  Google Scholar 

  • Gloersen P, Campbell WJ, Cavalieri DJ, Comiso JC, Parkinson CL, Zwally HJ (1992) Arctic and Antarctic sea ice, 1978–1987: satellite passive microwave observations and analysis. NASA Special Publications. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Gradinger R (2002) Sea ice microorganisms. In: Bitton G (ed) The encyclopedia of environmental microbiology. Wiley, New York, pp 2833–2844

    Google Scholar 

  • Grose M, McMinn A (2003) Algal biomass in east Antarctic pack ice: how much is in the east? In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Proceedings of the VIIIth SCAR international biology symposium. Backhuys Publishers, Leiden

  • Heil P, Allison I (1999) The pattern and variability of Antarctic sea-ice drift in the Indian Ocean and western Pacific sectors. J Geophys Res 104:15789–15802

    Article  Google Scholar 

  • Heil P, Fowler CW, Maslanik JA, Emery WJ, Allison I (2001) A comparison of East Antarctic sea-ice motion derived using drifting buoys and remote sensing. Ann Glaciol 33:139–144

    Article  Google Scholar 

  • Hewitt RP (2003) An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991–1992 through 2001–2002. Aquat Living Resour 16:205–213

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Lancelot C, Mathot S, Veth C, de Baar H (1993) Factors controlling phytoplankton ice-edge blooms in the marginal ice-zone of the northwestern Weddell Sea during sea ice retreat 1988: field observations and mathematical modelling. Polar Biol 13:377–387

    Article  Google Scholar 

  • Lannuzel D, Schoemann V, de Jong J, Tison J-L, Chou L (2007) Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106:18–32

    Article  CAS  Google Scholar 

  • Lavoie D, Denman K, Michel C (2005) Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago). J Geophys Res 110:C11009. doi:10.1029/2005JC002922

    Article  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 2: Global significance. Polar Biol 12:429–444

    Google Scholar 

  • Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73

    Article  Google Scholar 

  • Markus T, Cavalieri DJ (1998) Snow depth distribution over sea ice in the Southern Ocean from passive microwave data. In: Jeffries MO (ed) Antarctic sea ice: physical processes, interactions and variability, vol 74. American Geophysical Union, Washington, DC, pp 19–39

    Google Scholar 

  • Markus T, Cavalieri DJ (2006) Interannual and regional variability of Southern Ocean snow on sea ice. Ann Glaciol 44:53–57

    Article  CAS  Google Scholar 

  • Massom RA, Eicken H, Haas C, Jeffries MO, Drinkwater MR, Sturm M, Worby AP, Wu X, Lytle VI, Ushio S, Morris K, Reid PA, Warren SG, Allison I (2001) Snow on Antarctic sea ice. Rev Geophys 39:413–445

    Article  Google Scholar 

  • McMinn A, Ryan KG, Ralph PJ, Pankowski A (2007) Spring sea ice photosynthesis, primary productivity and biomass distribution in eastern Antarctica, 2002–2004. Mar Biol 151:985–995

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Schneider DP (2008) Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophys Res Lett 35:L07502. doi:10.1029/2007GL032630

    Article  Google Scholar 

  • Nicol S (2006) Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56:111–120

    Article  Google Scholar 

  • Nicol S, Pauly T, Bindoff NL, Wright S, Thiele D, Hosie GW, Strutton PG, Woehler EJ (2000) Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406:504–507

    Article  PubMed  CAS  Google Scholar 

  • Orsi A, Whitworth TIII, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap 42:641–673

    Article  Google Scholar 

  • Palmisano AC, SooHoo JB, Moe RL, Sullivan CW (1987) Sea ice microbial communities, VII: changes in under-ice spectral irradiance during the development of Antarctic sea ice microalgal communities. Mar Ecol Prog Ser 35:165–173

    Article  Google Scholar 

  • Parkinson CL (2002) Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann Glaciol 34:435–440

    Article  Google Scholar 

  • Parkinson CL (2004) Southern Ocean sea ice and its wider linkages: insights revealed from models and observations. Antarct Sci 16:387–400

    Article  Google Scholar 

  • Perovich DK (1996) The optical properties of sea ice. US Army Corps of Engineers, Hanover

    Google Scholar 

  • Powell DC, Markus T, Stössel A (2005) Effects of snow depth forcing on Southern Ocean sea ice simulations. J Geophys Res 110:C06001. doi:10.1029/2003JC002212

    Article  Google Scholar 

  • Rintoul SR, Sokolov S, Massom RA (2008) Rapid development and persistence of a massive Antarctic sea ice tongue. J Geophys Res 113:C07045. doi:10.1029/2007JC004541

    Article  Google Scholar 

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    Article  CAS  Google Scholar 

  • Siegel V (2005) Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol 29:1–22

    Article  Google Scholar 

  • Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56

    Article  Google Scholar 

  • Smith WO Jr, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: a satellite perspective. J Geophys Res 113:C05S93. doi:10.1029/2007JC004251

  • Smith WO Jr, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166

    Article  PubMed  Google Scholar 

  • Stretch JJ, Hamner PP, Hamner WM, Michel WC, Cook J, Sullivan CW (1988) Foraging behaviour of Antarctic krill Euphausia superba on sea ice microalgae. Mar Ecol Prog Ser 44:131–139

    Article  Google Scholar 

  • Swadling KM (2001) Population structure of two Antarctic ice-associated copepods, Drescheriella glacialis and Paralabidocera antarctica, in winter sea ice. Mar Biol 139:597–603

    Article  Google Scholar 

  • Thomas DN, Dieckmann GS (eds) (2003) Sea ice. An introduction to its physics, chemistry, biology and geology. Blackwell Publishing, Oxford, 416 pp

  • Thorpe SE, Murphy EJ, Watkins JL (2007) Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport. Deep Sea Res Part I Oceanogr Res Pap 54:792–810

    Article  Google Scholar 

  • Trevena AJ, Jones GB (2006) Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar Chem 98:210–222

    Article  CAS  Google Scholar 

  • Watanabe K, Satoh H, Takahashi E, Kanda H (1990) Pigment data of sea ice cores collected from fast ice area near Syowa Station, Antarctica, from March 1983 to January 1984(JREA-24). JARE Data Reports 157. Mar Biol 16:1–88

    Google Scholar 

  • Watterson IG, Dix MR (2003) Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J Geophys Res 108:4379. doi:4310.1029/2002JD002928

    Article  Google Scholar 

  • Worby AP, Massom RA, Allison I, Lytle VI, Heil P (1998) East Antarctic sea ice: a review of its structure, properties and drift. In: Jeffries MO (ed) Antarctic sea ice: physical processes, interactions, and variability, vol 74. American Geophysical Union, Washington, DC, pp 41–67

    Google Scholar 

  • Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL (2008a) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92. doi:10.1029/2007JC004254

  • Worby AP, Markus T, Steer AD, Lytle VI, Massom RA (2008b) Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in situ measurements and aerial photography. J Geophys Res 113:C05S94. doi:10.1029/2007JC004181

  • Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, Jan–Mar 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res Part II Top Stud Oceanogr 47:2363–2400

    Article  Google Scholar 

  • Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res 107:3041. doi:3010.1029/2000JC000733

    Article  Google Scholar 

Download references

Acknowledgments

Thorsten Markus provided the SMMR-SSM/I snow depth data. Comments from Delphine Lannuzel, Jan Lieser, and four anonymous reviewers greatly improved the manuscript. This research was supported by the Australian Government Cooperative Research Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), and by the Australian Antarctic Division under AAS Project 2943.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Raymond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, B., Meiners, K., Fowler, C.W. et al. Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E–150°E). Polar Biol 32, 443–452 (2009). https://doi.org/10.1007/s00300-008-0538-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0538-5

Keywords

Navigation