Skip to main content
Log in

Denitrification activity and oxygen dynamics in Arctic sea ice

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berg P, Rysgaard S, Thamdrup B (2003) Dynamic modeling of early diagenesis. A case study in an arctic marine sediment. Am J Sci 303:905–955

    Article  CAS  Google Scholar 

  • Cota GF (1985) Photoadaptation of high arctic ice algae. Nature 315:219–222

    Article  CAS  Google Scholar 

  • Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Google Scholar 

  • Devol AH, Codispoti LA, Christensen JP (1997) Summer and winter denitrification rates in western Arctic shelf sediments. Cont Shelf Res 17:1029–1050

    Article  Google Scholar 

  • Frederiksen MS, Glud RN (2006) Oxygen dynamics in the rhizosphere of Zostera marina: a two dimensional planar optode study. Limnol Oceanogr 51:1072–1083

    Article  Google Scholar 

  • Freitag J, Eicken H (2003) Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field experiments. J Glaciol 49:349–358

    Article  Google Scholar 

  • Gleitz M, v.d. Loeff MR, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Arctic sea ice brine. Mar Chem 51:81–91

    Article  CAS  Google Scholar 

  • Glud RN, Ramsing NB, Gundersen JK, Klimant I (1996) Planear optodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar Ecol Prog Ser 140:217–226

    Article  Google Scholar 

  • Glud RN, Holby O, Hoffmann F, Canfield D (1998) Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway). Mar Ecol Prog Ser 173:237–251

    Article  CAS  Google Scholar 

  • Glud RN, Tengberg A, Kühl M, Hall POJ, Klimant I (2001) An in situ instrument for planear O2 optode measurements at benthic interfaces. Limnol Oceanogr 46:2073–2080

    Article  CAS  Google Scholar 

  • Glud R, Rysgaard S, Kühl M (2002) A laboratory study on O2 dynamics and photosynthesis in ice algal communities: quantification by microsensors, O2 exchange rates, 14C incubations and PAM fluorometer. Aquat Microb Ecol 27:301–311

    Article  Google Scholar 

  • Glud RN, Rysgaard S, Kühl M, Hansen JW (2007) The sea ice in Young Sound: Implications for C cycling. In: Rysgaard S, Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study Young Sound. Meddr Greenland. Bioscience 58:62–85

  • Gradinger R, Frederich C, Spindler M (1999) Abundance, biomass and composition of the sea ice biorta of the Greenland Sea pack ice. Deep Sea Res II 46:1457–1472

    Article  Google Scholar 

  • Grasshoff K, Erhardt M, Kremling K (1983) Methods of seawater analysis, 2nd revised and extended version. Verlage Chemie, Weinheim, Deerfield Beach, Florida, Basel

  • Grunwald B, Kühl M (2004) A system for imaging variable chlorophyll fluorescence of aquatic phototrophs. Ophelia 58:79–89

    Google Scholar 

  • Hansen JW, Thamdrup B, Jørgensen BB (2000) Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Mar Ecol Prog Ser 208:273–282

    Article  Google Scholar 

  • Henriksen K, Blackburn TH, Lomstein BA, McRoy CP (1993) Rates of nitrification, distribution of nitrifying bacteria and inorganic N fluxes in Bering-Chukchi shelf sediments. Cont Shelf Res 13:629–651

    Article  Google Scholar 

  • Holst G, Grünwald B (2001) Luminescence lifetime imaging with transparent oxygen optodes. Sens Actuators B 74:78–90

    Article  Google Scholar 

  • Holst G, Kohls O, Klimant I, König B, Kühl M, Richter T (1998) A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples. Sans Actuators B 51:163–170

    Article  Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schonen KT, Schalk J, van Dongenthe UGJM, van der Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Article  Google Scholar 

  • Kaartokallio H (2001) Evidence for active microbial nitrogen transformations in sea ice (Gulf of Bothnia, Baltic Sea) in midwinter. Polar Biol 24:21–28

    Article  Google Scholar 

  • Kennedy H, Thomas DN, Kattner G, Haas C, Dieckmann GS (2002) Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition. Mar Ecol Prog Ser 238:1–13

    Article  CAS  Google Scholar 

  • Kirst O, Wienke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199

    Article  Google Scholar 

  • Klimant I, Holst G, Kûhl M (1997a) A simple fiberoptic sensor to detect the penetration of microsensors into sediment and other biogeochemical systems. Limnol Oceanogr 42:1638–1643

    Article  CAS  Google Scholar 

  • Klimant I, Kühl M, Glud RN, Holst G (1997b) Optical measurements of oxygen and other environmental parameters in microscale: strategies and biological applications. Sens Actuators B 38–39:29–37

    Article  Google Scholar 

  • Koike I, Hattori A (1979) Estimates of denitrification in sediments of the Bering Sea shelf. Deep Sea Res 26:409–415

    Article  CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163–2181

    Article  CAS  Google Scholar 

  • Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S (2001) Photosynthetic performance of surface associated algal below sea ice as measured with pulse amplitude modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Prog Ser 223:1–14

    Article  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26

    Article  CAS  Google Scholar 

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362

    Article  CAS  Google Scholar 

  • Platt T, Gallegos CL, Harison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Randall MJ, Ingraham JL (1981) The denitrifying procaryotes. In: Staar et al (eds) The prokaryotes, a handbook on habitats, isolation and identification of bacteria. Springer, Heidelberg, pp 913–925

  • Risgaard-Petersen N, Rysgaard S (1995) Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In: Alef A, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry Academic, New York

  • Rysgaard S, Glud RN (2004) Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr 49:86–94

    Article  CAS  Google Scholar 

  • Rysgaard S, Kühl M, Glud RN, Hansen JW (2001) Biomass, production and horizontal patchiness of sea ice algae in a high-arctic fjord (Young Sound, NE Greenland). Mar Ecol Prog Ser 223:15–26

    Article  Google Scholar 

  • Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr 49:1493–1502

    Article  CAS  Google Scholar 

  • Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, Op den Camp JM, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:1476–1484

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slow growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596

    Article  CAS  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic matter in arctic multi-year sea ice during winter: major components and relationship to ice characteristics. Polar Biol 15:477–483

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Environmental microbiology of anaerobes. Wiley, New York, pp 179–244

    Google Scholar 

  • Weissenberger JG, Dieckmann G, Gradinger R, Spindler M (1992) Sea ice: a cast technique to examine and analyze brine pockets and channel structure. Limnol Oceanogr 37:179–183

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Haxen for analytical work. S. R., R. N. G. and M. K. S. were supported by the Danish Natural Science Research Council and by DANCEA, the Danish Cooperation for Environment in the Arctic, Danish Ministry of the Environment. This work is a contribution to the Canadian Arctic Shelf Exchange Study (CASES) and to the Zackenberg Basic and Nuuk Basic Programmes in Greenland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Rysgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rysgaard, S., Glud, R.N., Sejr, M.K. et al. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol 31, 527–537 (2008). https://doi.org/10.1007/s00300-007-0384-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0384-x

Keywords

Navigation