Skip to main content
Log in

Dense populations of Archaea associated with the demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The associated microbial community in the mesohyl of the Arctic deep-water sponge Tentorium semisuberites Schmidt, 1870 (Hadromerida, Demospongiae) is dominated by Archaea. This is the result of an integral approach applying analyses of microbial lipid biomarkers as well as microscopic investigations using differential fluorescence in situ hybridisation with universal probes and counterstaining with 4′,6′-diamidino-2-phenylindole (DAPI) on sponge sections based on samples collected in the Greenland Sea in 2001, 2002 and 2005. The distribution of isoprenoidal C40 hydrocarbons of the biphytane series suggests that affiliates of both major archaeal kingdoms, the Crenarchaeota and the Euryarchaeota, are present in the choanosome of T. semisuberites. Positive signals using the oligonucleotide probe ARCH915 indicate high numbers of Archaea in the mesohyl of this sponge. Based on optical estimations 70–90% of all microbial DAPI signals accounted for archaeal cells. Archaea in these high proportions have never been described in an Arctic deep-sea hadromerid sponge, nor in any other demosponge species. Similar observations in specimens collected over a time scale of 4 years suggest permanent sponge-Archaea associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Barthel D, Tendal OS (1993) The sponge association of the abyssal Norwegian-Greenland Sea: species composition, substrate relationships and distribution. Sarsia 78:83–96

    Google Scholar 

  • Chappe B, Michaelis W, Albrecht P (1980) Molecular fossils of Archaebacteria as selective degradation products of kerogen. In: Douglas AG, Maxwell JR (eds) Advances in Organic Geochemistry 1979. Pergamon Press, Oxford, pp 265–274

    Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    PubMed  CAS  Google Scholar 

  • DeLong EF, King LL, Massana R, Cittone H, Murray A, Schleper C, Wakeham SG (1998) Dibiphytanyl ether lipids in nonthermophilic Crenarchaeotes. Appl Environ Microbiol 64:1133–1138

    PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Janussen D, Dröse W, Arp G, Reitner J (2003) Histological investigation of organisms with hard skeletons: a case study of siliceous sponges. Biotech Histochem 78:191–199

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Larsen O, Rapp HT, Osinga R (2005a) Oxygen dynamics in choanosomal sponge explants. Mar Biol Res 1:160–163

    Article  Google Scholar 

  • Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005b) An anaerobic world in sponges. Geomicrobiol J 22:1–10

    Article  Google Scholar 

  • Ilan M, Abelson A (1995) The life of a sponge in a sandy lagoon. Biol Bull 189:363–369

    Article  Google Scholar 

  • Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182

    PubMed  CAS  Google Scholar 

  • Kröncke I (1998) Macrofauna communities in the Amundsen Basin, at the Morris Jesup Rise and at the Yermak Plateau (Eurasian Arctic Ocean). Polar Biol 19:383–392

    Article  Google Scholar 

  • Madrid VM, Taylor GT, Scranton MI, Chistoserdov AY (2001) Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Methods 40:125–134

    Article  PubMed  CAS  Google Scholar 

  • Margot H, Acebal C, Toril E, Amils R, Fernandez Puentes JL (2002) Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar Biol 140:739–745

    Article  CAS  Google Scholar 

  • Pape T, Blumenberg M, Seifert R, Egorov VN, Gulin SB, Michaelis W (2005) Lipid geochemistry of methane-seep-related Black Sea carbonates. In: Peckmann J, Goedert JL (eds) Palaeogeogr, Palaeoclimat, Palaeoecol (special issue: Geobiology of Ancient and Modern Methane-Seeps), vol 227, pp 31–47

  • Pape T, Blumenberg M, Thiel V, Michaelis W (2004) Biphytanes as biomarkers for sponge-associated Archaea. In: Pansini M, Pronzato R, Bavestrello G, Manconi R (eds) Sponge science in the new Millenium. Boll Mus Ist Biol Univ Genova 68:509–515

  • Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68:661–667

    Article  PubMed  CAS  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarcheon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. P Natl Acad Sci USA 93:6241–6246

    Article  CAS  Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts. Facies 29:3–40

    Article  Google Scholar 

  • Sinninghe Damsté JS, Schouten S, Hopmans EC, van Duin ACT, Geenevasen JAJ (2002) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 43:1641–1651

    Article  Google Scholar 

  • Stahl DA, Amann RI (1991) Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chicester, pp 205–248

    Google Scholar 

  • Thiel V, Blumenberg M, Hefter J, Pape T, Pomponi S, Reed J, Reitner J, Wörheide G, Michaelis W (2002) A chemical view of the most ancient metazoa—biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89:60–66

    Article  PubMed  CAS  Google Scholar 

  • Vacelet J (1975) Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  • Vacelet J, Fiala-Médioni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser 145:77–85

    Article  Google Scholar 

  • Webster NS, Negri AP, Munro MMHG, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Webster NS, Watts JEM, Hill RT (2001) Detection and phylogenetic analysis of novel Crenarchaeote and Euryarchaeote 16S ribosomal RNA gene sequence from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson CR (1983) Phylogeny of bacterial and cyanobacterial symbionts in marine sponges. In: Schenk HEA, Schwemmler W (eds) Endocytobiology. II. Intracellular space as oligogenetic ecosystem. de Gruyter, Berlin, pp 993–1002

    Google Scholar 

  • Witte U (1995) Reproduktion, Energiestoffwechsel und Biodepositionsleistung dominanter Porifera aus der Tiefsee des Europäischen Nordmeeres. Bericht Sonderforschungsbereich 313, vol 53. University of Kiel, Kiel, pp 1–98

    Google Scholar 

Download references

Acknowledgements

Sampling took place during annual revisits to the long term monitoring station “AWI-Hausgarten”. We thank the crews of the R/Vs “Polarstern” and “L′Atalante” for assistance with sampling, Sabine Beckmann for analytical work and Wolfgang Dröse as well as Angela Scharfbillig for preparation of sponge sections. Three anonymous reviewers have greatly improved the quality of the original manuscript. Andrew K. Sweetman is kindly acknowledged for proofreading of the manuscript. This paper represents publication no. 54 of the research program BOSMAN (03F0358 A and C). Financial support was provided by the Bundesministerium für Bildung und Forschung (BMBF), Germany. F.H. was funded by the Max Planck Society and by the Deutsche Forschungsgemeinschaft (DFG – Project HO 3293/1–1) during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pape, T., Hoffmann, F., Quéric, NV. et al. Dense populations of Archaea associated with the demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters. Polar Biol 29, 662–667 (2006). https://doi.org/10.1007/s00300-005-0103-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-005-0103-4

Keywords

Navigation