Skip to main content
Log in

Relationships between geomorphology and vegetation patterns in subantarctic Andean tundra of Tierra del Fuego

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We analysed vegetation patterns in relation to geomorphology in subantarctic Andean tundra (Tierra del Fuego, southern Argentina). Habitat variation associated with geomorphology played a major role in structuring vegetation. On coarse-grained debris of talus cones, the vegetation is dominated by the epilithic fruticose lichen Neuropogon aurantiaco-ater, while vascular-plant cover is very low because of insufficient space available for seedling establishment, water shortage and, presumably, low nutrient status. Turf-banked lobes on moderately inclined slopes subject to downslope creep are characterised by vascular species forming large cushions (especially Azorella lycopodioides) which provide suitable microhabitats for several plants. Steep morainic slopes are extremely poor in species and have Marsippospermum reichei and Nardophyllum bryoides as characteristic species. The latter appears well adapted to withstand mechanical damage owing to its clonal creeping growth form. Screes represent intermediate habitats where the ecotonal species Bolax gummifera colonises debris and/or basal rock and may enhance the establishment of vascular species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3.

Similar content being viewed by others

References

  • Aichinger E (1933) Vegetationskunde der Karawanken. Fischer, Jena

  • Bergstrom DM, Selkirk PM (1999) Bryophyte propagule banks in a feldmark on Subantarctic Macquarie Island. Arct Antarct Alp Res 31:202–208

    Google Scholar 

  • Braak ter CJF, Smilauer P (1998) CANOCO for Windows: Software for Canonical Community Ordination (version 4). Centre for Biometry, Wagenigen

    Google Scholar 

  • Cannone N, Gerdol R (2003) Vegetation as an ecological indicator of surface instability in rock glaciers. Arct Antarct Alp Res (in press)

  • Cavieres L, Arroyo MTK, Peñaloza A, Molina Montenegro M, Torres C (2002) Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes. J Veg Sci 13:547–554

  • Collantes MB, Anchorena J, Koremblit G (1989) A soil nutrient gradient in Magellanic Empetrum heathlands. Vegetatio 80:183–193

    Google Scholar 

  • Coronato A (1996) Desarollo de circos glaciarios en el sector sudoccidental de los Andes fueginos (Argentina). XIII Congreso Geológico Argentino y III Congreso Argentino de Hidrocarburos Actas 4:347

  • French HM (1996) The periglacial environment, 2nd edn. Longman, London

  • Frenot Y, Gloaguen JC, Cannavacciuolo M, Bellido A (1998) Primary succession on glacier forelands in the subantarctic Kerguelen Islands. J Veg Sci 9:75–84

    Google Scholar 

  • Gardner JS (1979) The movement of material on debris slopes in the Canadian Rocky Mountains. Z Geomorphol NF 23:43–57

    Google Scholar 

  • Goodall DW (1952) Some considerations in the use of point quadrats for the analysis of vegetation. Aust J Sci Res Ser B 5:1–41

    Google Scholar 

  • Gremmen NJM (1982) The vegetation of the Subantarctic Islands Marion and Prince Edward. Junk, The Hague

  • Harper JL, Clatworthy JN, McNaughton JH, Sagal GS (1961) The evolution of closely related species living in the same area. Evolution 15:209–227

    Google Scholar 

  • Heilbronn TD, Walton DW (1984) Plant colonization of actively sorted stone stripes in the subantarctic. Arct Alp Res 16:161–172

    Google Scholar 

  • Hovenden MJ, Jackson AE, Seppelt RD (1994) Field photosynthetic activity of lichens in the Windmill Islands oasis, Wilkes Land, continental Antarctica. Physiol Plant 90:567–576

    Article  CAS  Google Scholar 

  • Kappen L, Schröter B, Scheidegger C, Sommerkorn M, Hestmark G (1996) Cold resistance and metabolic activity of lichens below 0°C. Adv Space Res 18:119–128

    Article  PubMed  Google Scholar 

  • Kappen L, Schröter B, Green TGA, Seppelt RD (1998) Microclimatic conditions, meltwater moistening, and the distributional pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar Biol 19:101:106

  • Levy EG, Madden EA (1933) The point method of pasture analyses. N Z J Agric 46:267–279

    Google Scholar 

  • Lüdi W (1945) Besiedlung und Vegetationsentwicklung auf den jungen Seitenmoränen des großen Aletschgletschers. Ber Geobot Inst Eidg Tech Hochsch Stift Rübel Zuerich1944:35–112

  • Mark AF, Dickinson KJM, Allen J, Smith R, West CJ (2001) Vegetation patterns, plant distribution and life forms across the alpine zone in southern Tierra del Fuego, Argentina. Aust Ecol 26:423–440

    Article  Google Scholar 

  • Moore DM (1968) The vascular flora of the Falkland Islands. Br Antarct Surv Sci Rep 60:1–202

    Google Scholar 

  • Moore DM (1975) The alpine flora of Tierra del Fuego. An Inst Bot Cavanilles 32:419–440

    Google Scholar 

  • Moore DM (1983a) Flora of Tierra del Fuego. Anthony Nelson England Missouri Botanical Garden

  • Moore DM (1983b) Flora of Fuego-Patagonian Cordilleras: its origins and affinities. Rev Chil Hist Nat 56:123–136

    Google Scholar 

  • Morefield JD (1992) Spatial and ecological segregation of phytogeographical elements in the White Mountains of California and Nevada. J Biogeogr 19:33–50

    Google Scholar 

  • Nuñez C, Aizen MA, Ezcurra C (1999) Species associations and nurse plant effects in patches of high-Andean vegetation. J Veg Sci 10:357–364

    Google Scholar 

  • Olivero EB, Martinioni DR (2001) A review of the geology of the Argentinian Fuegian Andes. J S Am Earth Sci 14:175–188

    Article  Google Scholar 

  • Pérez FL (1997) Geoecology of erratic lichens of Xanthoparmelia vagans in an equatorial Andean Paramo. Plant Ecol 129:11–28

    Article  Google Scholar 

  • Schröter C (1926) Das Pflanzenleben der Alpen. Albert Raustein, Zürich

  • Selkirk JM (1998) Active vegetation-banked terraces on Macquarie Island. Z Geomorphol 42:483–496

    Google Scholar 

  • Selkirk PM, Seppelt RD Selkirk DL (1990) Subantarctic Macquarie Island: environment and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–243

    Google Scholar 

  • Smith RIL (1996) Terrestrial and freshwater biotic components of the Western Antarctic Peninsula. In: Ross EM, Hofmann EE, Quetin LB (eds) Foundations for Ecological Research West of the Antarctic Peninsula. Antarct Res Ser 70:15–59

    Google Scholar 

  • Somson P (1984) Structure des organes hypogés de quelques espèces lithophiles pyrénéennes en relation avec la dynamique des pierriers. Ber Geobot Inst Eidg Tech Hochsch Stift Rübel Zuerich 51:78–117

  • Strelin J, Casassa G, Rosqvist G, Holmlund P (2001) Holocene glaciations at Glaciar Ema Valley, Monte Sarmiento, Tierra del Fuego. Resúmenes del simposio: Cambios vegetacionales y climáticos durante el último ciclo glacial-interglacial a lo largo de Chile continental. La Serena, Chile

  • Troll C (1960) The relationship between the climates, ecology and plant geography of the southern cold temperate zone and of the tropical high mountain. In: Pantin CFA (ed) A discussion of the southern cold temperate zone. Proc R Soc Lond B 152:529–532

    Google Scholar 

  • Tuhkanen S (1992) The climate of Tierra del Fuego, from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fenn 145:1–64

    Google Scholar 

  • Veblen TT, Ashton DH (1979) Successional pattern above timberline in South-Central Chile. Vegetatio 40:39–47

    Google Scholar 

  • Velásquez A (1994) Multivariate analysis of the vegetation of volcanoes Tláloc and Pelado, Mexico. J Veg Sci 5:263–270

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Google Scholar 

  • World Meteorological Organisation (1962) Climatological normals for climate and climateship Stations for the period 1931–60. WMO/OMM no. 117, TP.52. WMO, Geneva

Download references

Acknowledgements

This research was supported by a grant from the Italian E.N.E.A. (Project P.N.R.A.) to R. Gerdol, and a post-graduate fellowship from Ferrara University to L. Brancaleoni. We acknowledge the C.A.D.I.C. staff, particularly Dr. G.M. Pastur, for technical assistance. We thank Dr. N. Goodall (Ushuaia) for suggestions, Dr. C. Matteri (Buenos Aires) for moss determinations and Professor P.L. Nimis (Trieste) for lichen determinations. Special thanks are due to Professor A.F. Mark for valuable comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Brancaleoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brancaleoni, L., Strelin, J. & Gerdol, R. Relationships between geomorphology and vegetation patterns in subantarctic Andean tundra of Tierra del Fuego. Polar Biol 26, 404–410 (2003). https://doi.org/10.1007/s00300-003-0499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-003-0499-7

Keywords

Navigation