Skip to main content
Log in

Wege zur personalisierten Medizin beim Magenkarzinom

Ways to personalized medicine for gastric cancer

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das Magenkarzinom ist weltweit der vierthäufigste Tumor und die zweithäufigste krebsverursachte Todesursache bei Männern und Frauen. Fast 70 % der Patienten weisen zum Zeitpunkt der Diagnose bereits Lymphknotenmetastasen auf, was sich in einem medianen Überleben von nur 16,7 Monaten widerspiegelt. Die vollständige Resektion des Karzinoms mit D2-Lymphadenektomie ist bislang das einzige therapeutische Verfahren mit Chance auf Heilung im frühen Tumorstadium. Für die häufigeren fortgeschrittenen Tumorstadien stehen neben der chirurgischen Resektion verschiedene Chemotherapieverfahren zur Verfügung, die das Überleben verbessern können, aber selten zur Heilung führen. Die Suche nach neuen prädiktiven und diagnostischen Zielstrukturen ist damit unverändert von großer klinischer Relevanz. Unsere eigenen Studien identifizierten eine Reihe von für die Tumorbiologie des Magenkarzinoms wichtigen G-Protein-gekoppelten Rezeptoren (AT1R, AT2R, CXCR4, FZD7, LGR4, LGR5, LGR6). Einige dieser Rezeptoren kommen außerdem als Stammzellmarker des Magens in Betracht.

Abstract

Gastric cancer is the fourth most common tumor and the second most common cause of cancer-related deaths in the world. Approximately 70 % of the patients already have lymph node metastases at the time of the diagnosis leading to a median overall survival time of 16.7 months. Complete resection of the primary tumor with D2 lymphadenectomy offers the only chance of cure in the early stages of the disease. Survival of more locally advanced gastric cancer was improved by the introduction of perioperative, adjuvant and palliative chemotherapy of gastric cancer; however, the identification of novel predictive and diagnostic targets is urgently needed. Our own studies on gastric cancer biology identified several putative tumor biologically relevant G-protein-coupled receptors (e.g. AT1R, AT2R, CXCR4, FZD7, LGR4, LGR5, LGR6). Some of these receptors are also putative stem cell markers and may serve as future targets of an individualized therapy of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ahn HS, Lee HJ, Hahn S et al (2010) Evaluation of the seventh American Joint Committee on Cancer/International Union against cancer classification of gastric adenocarcinoma in comparison with the sixth classification. Cancer 116:5592–5598

    Article  PubMed  Google Scholar 

  2. Bang YJ, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697

    Article  PubMed  CAS  Google Scholar 

  3. Barker N, Clevers H (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138:1681–1696

    Article  PubMed  CAS  Google Scholar 

  4. Becker K, Langer R, Reim D et al (2011) Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: a summary of 480 cases. Ann Surg 253:934–939

    Article  PubMed  Google Scholar 

  5. Becker K, Mueller JD, Schulmacher C et al (2003) Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98:1521–1530

    Article  PubMed  Google Scholar 

  6. Becker K, Reim D, Novotny A et al (2012) Proposal for a multifactorial prognostic score that accurately classifies 3 groups of gastric carcinoma patients with different outcomes after neoadjuvant chemotherapy and surgery. Ann Surg 256:1002–1007

    Article  PubMed  Google Scholar 

  7. Carl-McGrath S, Lendeckel U et al (2006) Ectopeptidases in tumour biology: a review. Histol Histopathol 21:1339–1353

    PubMed  CAS  Google Scholar 

  8. Carl-McGrath S, Lendeckel U, Ebert M et al (2004) The ectopeptidases CD10, CD13, CD26, and CD143 are upregulated in gastric cancer. Int J Oncol 25:1223–1232

    PubMed  CAS  Google Scholar 

  9. Carneiro F (1997) Classification of gastric carcinomas. Curr Diagn Pathol 4:51–59

    Article  Google Scholar 

  10. Chua TC, Merrett ND (2012) Clinicopathologic factors associated with HER2-positive gastric cancer and its impact on survival outcomes – a systematic review. Int J Cancer 130:2845–2856

    Article  PubMed  CAS  Google Scholar 

  11. Chung S, Funakoshi T, Civelli O (2008) Orphan GPCR research. Br J Pharmacol 153(Suppl 1):S339–S346

    Article  PubMed  CAS  Google Scholar 

  12. Cunningham D, Allum WH, Stenning SP et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355:11–20

    Article  PubMed  CAS  Google Scholar 

  13. Gasparo M de, Catt KJ, Inagami T et al (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  14. Deng N, Goh LK, Wang H et al (2012) A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61:673–684

    Article  PubMed  CAS  Google Scholar 

  15. Domanska UM, Kruizinga RC, Nagengast WB et al (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49:219–230

    Article  PubMed  CAS  Google Scholar 

  16. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94

    Article  PubMed  CAS  Google Scholar 

  17. Ebert MP, Lendeckel U, Westphal S et al (2005) The angiotensin I-converting enzyme gene insertion/deletion polymorphism is linked to early gastric cancer. Cancer Epidemiol Biomarkers Prev 14:2987–2989

    Article  PubMed  CAS  Google Scholar 

  18. Fang WL, Huang KH, Chen JH et al (2011) Comparison of the survival difference between AJCC 6th and 7th editions for gastric cancer patients. World J Surg 35:2723–2729

    Article  PubMed  Google Scholar 

  19. Fujita T (2013) Targeted therapy for gastric cancer. Lancet Oncol 14:440–442

    Article  PubMed  Google Scholar 

  20. Goseki N, Takizawa T, Koike M (1992) Differences in the mode of the extension of gastric cancer classified by histological type: new histological classification of gastric carcinoma. Gut 33:606–612

    Article  PubMed  CAS  Google Scholar 

  21. Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  PubMed  CAS  Google Scholar 

  22. Ingold B, Simon E, Ungethum U et al (2010) Vascular CXCR4 expression – a novel antiangiogenic target in gastric cancer? PLoS One 5:e10087

    Article  PubMed  Google Scholar 

  23. Jorgensen JT, Hersom M (2012) HER2 as a prognostic marker in gastric cancer – a systematic analysis of data from the literature. J Cancer 3:137–144

    Article  PubMed  Google Scholar 

  24. Kamposioras K, Pentheroudakis G, Pectasides D et al (2011) Malignant melanoma of unknown primary site. To make the long story short. A systematic review of the literature. Crit Rev Oncol Hematol 78:112–126

    Article  PubMed  CAS  Google Scholar 

  25. Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 12:70–88

    Article  PubMed  CAS  Google Scholar 

  26. Kim SH, Ha TK, Kwon SJ (2011) Evaluation of the 7th AJCC TNM staging system in point of lymph node classification. J Gastric Cancer 11:94–100

    Article  PubMed  Google Scholar 

  27. Kim ST, Park KH, Oh SC et al (2012) How does inhibition of the renin-angiotensin system affect the prognosis of advanced gastric cancer patients receiving platinum-based chemotherapy? Oncology 83:354–360

    Article  PubMed  CAS  Google Scholar 

  28. Koizumi K, Kato S, Sakurai H et al (2012) Therapeutics target of CXCR4 and its downstream in peritoneal carcinomatosis of gastric cancer. Front Biosci (Schol Ed) 4:269–276

    Google Scholar 

  29. Lauren T (1965) The two histologic main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 64:31–49

    PubMed  CAS  Google Scholar 

  30. Lauwers GY, Carneiro F, Graham DY et al (2010) Tumours of the stomach. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (Hrsg) WHO classification of tumours of the digestive system. International Agency for Research on Cancer (IARC), Lyon, S 48–80

  31. Lee HE, Kim MA, Lee HS et al (2012) MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer 107:325–333

    Article  PubMed  CAS  Google Scholar 

  32. Lordick F, Kang YK, Chung HC et al (2013) Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 14:490–499

    Article  PubMed  CAS  Google Scholar 

  33. Marrelli D, Morgagni P, Coniglio A et al (2012) Prognostic value of the 7th AJCC/UICC TNM classification of noncardia gastric cancer: analysis of a large series from specialized Western centers. Ann Surg 255:486–491

    Article  PubMed  Google Scholar 

  34. Ming SC (1977) Gastric carcinoma. A pathobiological classification. Cancer 39:2475–2485

    Article  PubMed  CAS  Google Scholar 

  35. Moch H, Blank PR, Dietel M et al (2012) Personalized cancer medicine and the future of pathology. Virchows Arch 460:3–8

    Article  PubMed  CAS  Google Scholar 

  36. Moehler M, Al-Batran SE, Andus T et al (2011) German S3-guideline „diagnosis and treatment of esophagogastric cancer“. Z Gastroenterol 49:461–531

    Article  PubMed  CAS  Google Scholar 

  37. Mulligan RM (1972) Histogenesis and biologic behavior of gastric carcinoma. Pathol Annu 7:349–415

    PubMed  CAS  Google Scholar 

  38. Nakamura K, Sugano H, Takagi K (1968) Carcinoma of the stomach in incipient phase: its histogenesis and histological appearances. Gann 59:251–258

    PubMed  CAS  Google Scholar 

  39. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  CAS  Google Scholar 

  40. Qiu MZ, Wang ZQ, Zhang DS et al (2011) Comparison of 6th and 7th AJCC TNM staging classification for carcinoma of the stomach in China. Ann Surg Oncol 18:1869–1876

    Article  PubMed  Google Scholar 

  41. Reim D, Loos M, Vogl F et al (2013) Prognostic implications of the seventh edition of the international union against cancer classification for patients with gastric cancer: the Western experience of patients treated in a single-center European institution. J Clin Oncol 31:263–271

    Article  PubMed  Google Scholar 

  42. Riordan JF (2003) Angiotensin-I-converting enzyme and its relatives. Genome Biol 4:225

    Article  PubMed  Google Scholar 

  43. Robert Koch-Institut (Hrsg) Verbreitung von Krebserkrankungen in Deutschland. Entwicklung der Prävalenzen zwischen 1990 und 2010. Beiträge zur Gesundheitsberichterstattung des Bundes. 1990–2010, 37–44. 23-2-2010. Berlin, RKI

  44. Röcken C, Lendeckel U, Dierkes J et al (2005) The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clin Cancer Res 11:2526–2530

    Article  PubMed  Google Scholar 

  45. Röcken C, Röhl FW, Diebler E et al (2007) The angiotensin II/angiotensin II-receptor-system correlates with nodal spread in intestinal-type gastric cancer. Cancer Epidemiol Biomarkers Prev 16:1206–1212

    Article  PubMed  Google Scholar 

  46. Rüschoff J, Dietel M, Baretton G et al (2010) HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch 457:299–307

    Article  PubMed  Google Scholar 

  47. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403

    Google Scholar 

  48. Schmiegel W, Reinacher-Schick A, Arnold D et al (2008) Update S3-guideline „colorectal cancer“ 2008. Z Gastroenterol 46:799–840

    Article  PubMed  CAS  Google Scholar 

  49. Schmuck R, Warneke V, Behrens HM et al (2011) Genotypic and phenotypic characterization of side population of gastric cancer cell lines. Am J Pathol 178:1792–1804

    Article  PubMed  Google Scholar 

  50. Simon E, Petke D, Boger C et al (2012) The spatial distribution of LGR5+ cells correlates with gastric cancer progression. PLoS One 7:e35486

    Article  PubMed  CAS  Google Scholar 

  51. Sobin LH, Gospodarowicz M, Wittekind C (2009) TNM classification of malignant tumours. Wiley-Blackwell, Weinheim

  52. Steffen JS, Simon E, Warneke V et al (2012) LGR4 and LGR6 are differentially expressed and of putative tumor biological significance in gastric carcinoma. Virchows Arch 461:355–365

    Article  PubMed  CAS  Google Scholar 

  53. Sun Z, Wang ZN, Zhu Z et al (2012) Evaluation of the seventh edition of American Joint Committee on Cancer TNM staging system for gastric cancer: results from a Chinese monoinstitutional study. Ann Surg Oncol 19:1918–1927

    Article  PubMed  Google Scholar 

  54. Suzuki Y, Ruiz-Ortega M, Lorenzo O et al (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900

    Article  PubMed  CAS  Google Scholar 

  55. Tan IB, Ivanova T, Lim KH et al (2011) Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 141:476–485, 485.e1–485.e11

    Article  PubMed  Google Scholar 

  56. Varon C, Dubus P, Mazurier F et al (2012) Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice. Gastroenterology 142:281–291

    Article  PubMed  Google Scholar 

  57. Warneke V, Behrens HM, Haag J et al (2013) Prognostic and putative redictive biomarkers of gastric cancer for personalized medicine. Diagn Mol Pathol. doi: 10.1097/PDM.0b013e318284188e

  58. Warneke VS, Behrens HM, Böger C et al (2013) Her2/neu testing in gastric cancer: evaluating the risk of sampling errors. Ann Oncol 24:725–733

    Article  PubMed  CAS  Google Scholar 

  59. Warneke VS, Behrens HM, Hartmann JT et al (2011) Cohort study based on the seventh edition of the TNM classification for gastric cancer: proposal of a new staging system. J Clin Oncol 29:2364–2371

    Article  PubMed  Google Scholar 

  60. Zang ZJ, Cutcutache I, Poon SL et al (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Studien zum Magenkarzinom werden von der Deutschen Forschungsgemeinschaft unterstützt (Ro 1173/11 und Ro1173/12).

Einhaltung der ethischen Richtlinien

Interessenkonflikt. C. Röcken gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Röcken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röcken, C. Wege zur personalisierten Medizin beim Magenkarzinom. Pathologe 34, 403–412 (2013). https://doi.org/10.1007/s00292-013-1785-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-013-1785-y

Schlüsselwörter

Keywords

Navigation