Skip to main content
Log in

Chitosan/laponite nanocomposite nanogels as a potential drug delivery system

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we fabricated and characterized nanometric chitosan (Cs)/laponite (La) nanocomposite nanogels for controlled drug delivery applications. Cs and Cs/La nanocomposite nanogels were formed by ionic gelation method using tripolyphosphate. The release of honey as a model drug was monitored using a blood glucose meter. The results of dynamic light scattering and field emission scanning electron microscopy demonstrated that in the wet state, the mean particle size of nanogels were 133 nm and 118 nm for Cs nanogels and Cs/La nanocomposite nanogels, moderately reducing to 32 nm and 95 nm at dried state, respectively. X-ray diffraction analysis confirmed exfoliated morphology for nanocomposite nanogels. Although honey loading increased the size of the nanogels, it had no effect on the morphology of nanocomposite nanogels. The loading efficiency and loading capacity of encapsulation decreased in nanocomposite nanogels. The honey release profile of nanocomposite nanogels began with a burst release, and showed lower values compared to Cs nanogels during the first hour. Our results corroborated to the higher cross-linking density and barrier effect of La in nanocomposite nanogels.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. De Pinho Neves AL, Milioli CC, Müller L, Riella HG, Kuhnen NC, Stulzer HK (2014) Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloid Surf A 445:34–39. https://doi.org/10.1016/j.colsurfa.2013.12.058

    Article  CAS  Google Scholar 

  2. Hassani S, Laouini A, Fessi H, Charcosset C (2015) Preparation of chitosan–TPP nanoparticles using microengineered membranes—effect of parameters and encapsulation of tacrine. Colloid Surf A 482:34–43. https://doi.org/10.1016/j.colsurfa.2015.04.006

    Article  CAS  Google Scholar 

  3. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  4. Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloid Surf B 90:21–27. https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  CAS  Google Scholar 

  5. Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X (2008) Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem 56(16):7451–7458. https://doi.org/10.1021/jf801111c

    Article  CAS  PubMed  Google Scholar 

  6. Dong Y, Ng WK, Shen S, Kim S, Tan RB (2013) Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym 94(2):940–945. https://doi.org/10.1016/j.carbpol.2013.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Huang Q (2012) Rheological properties of chitosan–tripolyphosphate complexes: from suspensions to microgels. Carbohydr Polym 87(2):1670–1677. https://doi.org/10.1016/j.carbpol.2011.09.074

    Article  CAS  Google Scholar 

  8. Fernandez-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, MaJ A (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16(10):1576–1581. https://doi.org/10.1023/A:1018908705446

    Article  CAS  PubMed  Google Scholar 

  9. Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48(3):291–295. https://doi.org/10.1016/j.clay.2010.01.007

    Article  CAS  Google Scholar 

  10. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for ph responsive targeted drug delivery. Eur J Pharm Sci 62:243–250. https://doi.org/10.1016/j.ejps.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  11. Huang H-Y, Shieh Y-T, Shih C-M, Twu Y-K (2010) Magnetic chitosan/iron (ii, iii) oxide nanoparticles prepared by spray-drying. Carbohydr Polym 81(4):906–910. https://doi.org/10.1016/j.carbpol.2010.04.003

    Article  CAS  Google Scholar 

  12. Mahdavinia GR, Soleymani M, Etemadi H, Sabzi M, Atlasi Z (2018) Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads. Int J Biol Macromol 107:719–729. https://doi.org/10.1016/j.ijbiomac.2017.09.042

    Article  CAS  PubMed  Google Scholar 

  13. Raut SY, Gahane A, Joshi MB, Kalthur G, Mutalik S (2019) Nanocomposite clay-polymer microbeads for oral controlled drug delivery: development and in vitro and in vivo evaluations. J Drug Deliv Sci Technol 51:234–243. https://doi.org/10.1016/j.jddst.2019.03.001  

    Article  CAS  Google Scholar 

  14. Yang H, Hua S, Wang W, Wang A (2011) Composite hydrogel beads based on chitosan and laponite: preparation, swelling, and drug release behaviour. Iran Polym J 20(6):479–490

    CAS  Google Scholar 

  15. Batista T, Chiorcea-Paquim A-M, Brett AMO, Schmitt CC, Neumann MG (2011) Laponite RD/polystyrenesulfonate nanocomposites obtained by photopolymerization. Appl Clay Sci 53(1):27–32. https://doi.org/10.1016/j.clay.2011.04.007

    Article  CAS  Google Scholar 

  16. Fan Q, Shan D, Xue H, He Y, Cosnier S (2007) Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix. Biosens Bioelectron 22(6):816–821. https://doi.org/10.1016/j.bios.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  17. Ordikhani F, Dehghani M, Simchi A (2015) Antibiotic-loaded chitosan-Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. J Mater Sci Mater Med 26(12):269. https://doi.org/10.1007/s10856-015-5606-0

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Liu A, Ye R, Wang Y, Wang W (2015) Fabrication of gelatin–laponite composite films: effect of the concentration of laponite on physical properties and the freshness of meat during storage. Food Hydrocol 44:390–398. https://doi.org/10.1016/j.foodhyd.2014.10.014

    Article  CAS  Google Scholar 

  19. Li P, Kim NH, Hui D, Rhee KY, Lee JH (2009) Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated laponite. Appl Clay Sci 46(4):414–417. https://doi.org/10.1016/j.clay.2009.10.007

    Article  CAS  Google Scholar 

  20. Yuan Z, Fan Q, Dai X, Zhao C, Lv A, Zhang J et al (2014) Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films. Carbohydr Polym 102:431–437. https://doi.org/10.1016/j.carbpol.2013.11.051

    Article  CAS  PubMed  Google Scholar 

  21. Gaware SA, Rokade KA, Kale SN (2019) Silica-chitosan nanocomposite mediated pH-sensitive drug delivery. J Drug Deliv Sci Technol 49:345–351. https://doi.org/10.1016/j.jddst.2018.11.022

    Article  CAS  Google Scholar 

  22. Shu XZ, Zhu KJ (2002) The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm 54(2):235–243. https://doi.org/10.1016/S0939-6411(02)00052-8

    Article  CAS  PubMed  Google Scholar 

  23. Chen RH, Tsaih ML (1998) Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Int J Biol Macromol 23(2):135–141. https://doi.org/10.1016/S0141-8130(98)00036-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tarbiat Modares University and the Iran Nanotechnology Initiative Council (INIC) for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Kokabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikfarjam, M., Kokabi, M. Chitosan/laponite nanocomposite nanogels as a potential drug delivery system. Polym. Bull. 78, 4593–4607 (2021). https://doi.org/10.1007/s00289-020-03335-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03335-9

Keywords

Navigation