Skip to main content
Log in

Preparation and characterization of poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine] thin films for biomedical applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The nanoscale architectures evident in the thin films of self-assembling hybrid block copolymers—which are tailored to inherit the advantageous properties of their constituent synthetic (homo)polymer and polypeptide blocks—have continued to inspire a variety of new applications in different fields, including biomedicine. The thin films of symmetric hybrid block copolymer, α-methoxy-poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine], MPEG112-b-PLL(Z)17, were prepared by solvent casting in five different solvents and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy, Thermogravimetric analysis, Derivative Thermogravimetric analysis, Differential Scanning Calorimetry, Contact Angle goniometry, Wide-Angle X-ray Diffraction, and Scanning Electron Microscopy. Film thickness was estimated to be 51 ± 23 μm by the “step-height” method, using a thickness gauge. Although no significant change to the block copolymer’s microstructure was observed, its solvent-cast films displayed divergent physical and thermal properties. The resulting cast films proved more thermally stable than the bulk but indicated greater block miscibility. Additionally, the thin films of MPEG112-b-PLL(Z)17 preserved the microphase separation exhibited by the bulk copolymer albeit with appreciable loss of crystallinity. The surface properties of the polymer–air interface were diverse as were the effects of the casting solvents. Oriented equilibrium morphologies are also evident in some of the as-cast thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Charrier J-M (1990) Polymeric materials and processing: plastics, elastomers and composites. Oxford University Press, New York

    Google Scholar 

  2. Jacob MV, Easton CD, Woods GS, Berndt CC (2008) Fabrication of a novel organic polymer thin film. Thin Solid Films 516:3884–3887

    Article  CAS  Google Scholar 

  3. Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738

    Article  CAS  Google Scholar 

  4. Wang J-Y, Park S, Russell TP (2008) Block copolymer thin films. In: Tsui OKC, Russell TP (eds) Polymer thin films. World Scientific Publishing, Singapore, pp 1–25

    Chapter  Google Scholar 

  5. Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15:237–248

    Google Scholar 

  6. Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63:822–836

    Article  CAS  Google Scholar 

  7. Vendra VK, Wu L, Krishnan S (2010) In: Kumar CSSR (ed) Nanomaterials for the life sciences vol. 5: nanostructured thin films and surfaces. Wiley-VCH, Weinheim, pp 1–54

  8. Brannon-Peppas L, Vert M (2000) Polylactic and polyglycolic acids as drug delivery carriers. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker, New York, pp 107–130

    Google Scholar 

  9. Green PF, Limary R (2001) Block copolymer thin films: pattern formation and phase behaviour. Adv Colloid Interface Sci 94:53–81

    Article  CAS  Google Scholar 

  10. Elabd YA, Hickner MA (2011) Block copolymers for fuel cells. Macromolecules 44:1–11

    Article  CAS  Google Scholar 

  11. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  12. Segalman RA (2005) Patterning with block copolymer thin films. Mater Sci Eng R 48:191–226

    Article  Google Scholar 

  13. Higuchi T, Motoyoshi K, Sugimori H, Jinnai H, Yabu H, Shimomura M (2010) Phase transition and phase transformation in block copolymer nanoparticles. Macromol Rapid Commun 31:1773–1778

    Article  CAS  Google Scholar 

  14. Hamley IW (2009) Ordering in thin films of block copolymers: fundamentals to potential applications. Prog Polym Sci 34:1161–1210

    Article  CAS  Google Scholar 

  15. Ramanathan M, Darling SB (2011) Mesoscale morphologies in polymer thin films. Prog Polym Sci 36:793–812

    Article  CAS  Google Scholar 

  16. Billmeyer FW Jr (1984) Textbook of polymer science, 3rd edn. Wiley, New York

    Google Scholar 

  17. Kryszewski M (1972) Formation of supermolecular structures in thin polymer layers. Pure Appl Chem 31:21–47

    CAS  Google Scholar 

  18. Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Colloid Polym Sci 130:1–14

    CAS  Google Scholar 

  19. Law PW, Longdon A, Willins GG (2004) Solvent cast cellulose diacetate film. Macromol Symp 208:293–322

    Article  CAS  Google Scholar 

  20. Kim G, Libera M (1998) Morphological development in solvent-cast polystyrene–polybutadiene–polystyrene (SBS) triblock copolymer thin films. Macromolecules 31:2569–2577

    Article  CAS  Google Scholar 

  21. Strawhecker KE, Kumar SK, Douglas JF, Karim A (2001) The critical role of solvent evaporation on the roughness of spin-cast polymer films. Macromolecules 34:4669–4672

    Article  CAS  Google Scholar 

  22. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Article  CAS  Google Scholar 

  23. Fruijtier-Pölloth C (2005) Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 214:1–38

    Article  Google Scholar 

  24. Molineux G (2002) Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 28:13–16

    Article  CAS  Google Scholar 

  25. Davis FF, Abuchowski A, van Es T, Palczuk NC, Savoca K, Chen RH-L, Pyatak P (1980) Soluble, non-antigenic polyethylene glycol-bound enzymes. In: Goldberg EP, Nakajima A (eds) Biomedical polymers: polymeric materials and pharmaceuticals for biomedical use. Academic Press, New York, pp 441–452

    Google Scholar 

  26. Nakajima A, Kugo K, Hayashi T, Sato H (1980) Formation, structure and properties of tri-block copolymer membranes: biomaterials containing poly-α-amino acids as one component. In: Goldberg EP, Nakajima A (eds) Biomedical polymers: polymeric materials and pharmaceuticals for biomedical use. Academic Press, New York, pp 243–269

    Google Scholar 

  27. Shanmugam G, Polavarapu PL (2008) Concentration- and dehydration-dependent structural transitions in poly-l-lysine. J Mol Struct 890:144–149

    Article  CAS  Google Scholar 

  28. Katchalski E, Grossfeld I, Frankel M (1948) Poly-condensation of α-amino derivatives III: poly-lysine. J Am Chem Soc 70:2094–2101

    Article  CAS  Google Scholar 

  29. Ottenbrite RM (1989) Controlled release technology. In: Encyclopedia of polymer science and engineering, 2nd edn, suppl vol. Wiley, New York, pp 164–187

  30. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine: applications to electron microscopy. J Cell Biol 66:198–200

    Article  CAS  Google Scholar 

  31. Nathan A, Kohn J (1994) Amino acid derived polymers. In: Shalaby SW (ed) Biomedical polymers: designed-to-degrade systems. Hanser/Gardner Publications, Cincinnati, pp 117–151

    Google Scholar 

  32. Koiso K, Komai T, Niijima T (1983) Experimental urinary bladder reconstruction using a synthetic poly(α-amino acids) membrane. Artif Organs 7:232–237

    Article  CAS  Google Scholar 

  33. Dorn K, Hoerpel G, Ringsdorf H (1985) Polymeric antitumor agents on molecular and cellular levels. In: Gebelein CG, Carraher CE Jr (eds) Bioactive polymer systems: an overview. Plenum Press, New York, pp 531–585

    Chapter  Google Scholar 

  34. Katayose S, Kataoka K (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(l-lysine) block copolymer. Bioconjugate Chem 8:702–707

    Article  CAS  Google Scholar 

  35. Lussi JW, Michel R, Reviakine I, Falconnet D, Goessl A, Csucs G, Hubbell JA, Textor M (2004) A novel generic platform for chemical patterning of surfaces. Prog Surf Sci 76:55–69

    Article  CAS  Google Scholar 

  36. Shiraishi K, Kawano K, Minowa T, Maitani Y, Yokoyama M (2009) Preparation and in vivo imaging of PEG-poly(l-lysine)-based polymeric micelle MRI contrast agents. J Control Release 136:14–20

    Article  CAS  Google Scholar 

  37. Jang W-D, Nakagishi Y, Nishiyama N, Kawauchi S, Morimoto Y, Kikuchi M, Kataoka K (2006) Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 113:73–79

    Article  CAS  Google Scholar 

  38. Sakurai Y, Akaike T, Kataoka K, Okano T (1980) Interfacial phenomena in biomaterials chemistry. In: Goldberg EP, Nakajima A (eds) Biomedical polymers: polymeric materials and pharmaceuticals for biomedical use. Academic Press, New York, pp 335–379

    Google Scholar 

  39. Saravia V, Küpcü S, Nolte M, Huber C, Pum D, Fery A, Sleytr UB, Toca-Herrera JL (2007) Bacterial protein patterning by micro-contact printing of PLL-g-PEG. J Biotechnol 130:247–252

    Article  CAS  Google Scholar 

  40. Männistö M, Vanderkerken S, Toncheva V, Elomaa M, Ruponen M, Schacht E, Urtti A (2002) Structure–activity relationships of poly(l-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release 83:169–182

    Article  Google Scholar 

  41. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  42. Mui SC, Trapa PE, Huang B, Soo PP, Lozow MI, Wang TC, Cohen RE, Mansour AN, Mukerjee S, Mayes AM, Sadoway DR (2002) Block copolymer-templated nanocomposite electrodes for rechargeable lithium batteries. J Electrochem Soc 149:A1610–A1615

    Article  CAS  Google Scholar 

  43. Kugo K, Murashima M, Hayashi T, Nakajima A (1983) Structure and properties of membrane surfaces of A-B-A triblock copolymers consisting of poly(γ-methyl d, l-glutamate) as the A component and polybutadiene as the B component. Polym J 15:267–277

    Article  CAS  Google Scholar 

  44. Müller-Buschbaum P, Gutmann JS, Lorenz-Haas C, Mahltig B, Stamm M, Petry W (2001) Early stages of film creation in thin diblock copolymer films. Macromolecules 34:7463–7470

    Article  Google Scholar 

  45. Izunobi JU, Higginbotham CL (2010) Microstructure characterization and thermal analysis of hybrid block copolymer α-methoxy-poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine] for biomedical applications. J Mol Struct 977:153–164

    Article  CAS  Google Scholar 

  46. Izunobi JU, Higginbotham CL (2011) Polymer molecular weight analysis by 1H NMR spectroscopy. J Chem Educ 88:1098–1104

    Article  CAS  Google Scholar 

  47. Woodward RP (1999) Contact angle measurements using the drop shape method. First Ten Angstroms Inc, Portsmouth

    Google Scholar 

  48. Bellamy LJ (1975) The infrared spectra of complex molecules, vol 1, 3rd edn. Chapman and Hall, London

    Book  Google Scholar 

  49. Izunobi JU, Higginbotham CL (2013) Conformational and thermal analyses of α-methoxy-poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine] hybrid block copolymers. Polym Int 62:1169–1178

    Google Scholar 

  50. Lever T (2007) Optimizing DSC experiments. In: Craig DQM, Reading M (eds) Thermal analysis of pharmaceuticals. CRC Press, Boca Raton, pp 23–51

    Google Scholar 

  51. Dawkins JV (1973) In: Allport DC, Janes WH (eds) Block copolymers. Applied Science, London, pp 363–408

    Google Scholar 

  52. Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF (2004) Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films. Biomaterials 25:4741–4748

    Article  CAS  Google Scholar 

  53. Chan C-M (1994) Polymer surface modification and characterization. Hanser, Munich

    Google Scholar 

  54. Inoue H, Matsumoto A, Matsukawa K, Ueda A, Nagai S (1990) Surface characteristics of polydimethyl siloxane–poly(methyl methacrylate) block copolymers and their PMMA blends. J Appl Polym Sci 41:1815–1829

    Article  CAS  Google Scholar 

  55. Loudon GM (1988) Organic Chemistry, 2nd edn. Benjamin/Cummings, Menlo Park, CA, pp 289–291

Download references

Acknowledgments

We thank Dr. James Kennedy for SEM, and Dr. Sean Lyons and Dr. Declan Devine for useful discussion. This work was funded, in part, under the Irish National Development Plan (NDP) Technological Sector Research program (Strand III).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement L. Higginbotham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izunobi, J.U., Geever, L.M. & Higginbotham, C.L. Preparation and characterization of poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine] thin films for biomedical applications. Polym. Bull. 71, 1691–1709 (2014). https://doi.org/10.1007/s00289-014-1149-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1149-7

Keywords

Navigation