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Abstract We consider the dynamics of a piecewise affine system of degrade-and-fire
oscillators with global repressive interaction, inspired by experiments on synchroniza-
tion in colonies of bacteria-embedded genetic circuits. Due to global coupling, if any
two oscillators happen to be in the same state at some time, they remain in sync at all
subsequent times; thus clusters of synchronized oscillators cannot shrink as a result of
the dynamics. Assuming that the system is initiated from random initial configurations
of fully dispersed populations (no clusters), we estimate asymptotic cluster sizes as a
function of the coupling strength. A sharp transition is proved to exist that separates a
weak coupling regime of unclustered populations from a strong coupling phase where
clusters of extensive size are formed. Each phenomena occurs with full probability in
the thermodynamics limit. Moreover, the maximum number of asymptotic clusters is
known to diverge linearly in this limit. In contrast, we show that with positive proba-
bility, the number of asymptotic clusters remains bounded, provided that the coupling
strength is sufficiently large.
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1628 B. Fernandez, L. S. Tsimring

1 Introduction

Simple models of interacting oscillators are important for understanding synchroniza-
tion phenomena in many branches of physics and biology. An archetypical example
is the Kuramoto model of globally-coupled oscillators with distributed frequencies,
in which synchronization takes place when the coupling strength increases beyond
a positive threshold (Acebron et al. 2005; Strogatz 2000). This mechanism has been
repeatedly invoked to elucidate observed behaviors in a variety of concrete systems,
including the collective dynamics of Josephson junctions (Wiesenfeld and Swift 1995),
fireflies (Buck 1988), pacemaker cells in the heart (Peskin 1975), and neural networks
in the brain (Tass 1999), among others.

Beyond the Kuramoto model, proofs of synchrony have been given for assemblies
of pulse-coupled oscillators with excitatory couplings (Bottani 1995; Mirollo and
Strogatz 1990), at any coupling strength, not only in the case of homogeneous systems
where all individual characteristics are identical, but also for certain heterogeneous
models with distributed individual frequencies, thresholds and/or coupling parameters
(Seen and Urbanczik 2000). For inhibitory couplings, the phenomenology is richer and
populations commonly break into distinct clusters. However, in this case the analysis
is more involved, and proofs are scarce, especially when the population size N exceeds
two units (Ernst et al. 1995).

Recently, we introduced a discontinuous piecewise affine model of coupled oscil-
lators with repressive interactions (Fernandez and Tsimring 2011) inspired by exper-
iments on synchronization in colonies of bacteria-embedded synthetics gene oscil-
lators (Danino et al. 2010). This simple model mimics the basic phenomenology of
the degrade-and-fire (DF) regime of oscillations described by the associated nonlinear
delay-differential equations (Mather et al. 2009). The DF oscillations are of saw-
tooth type with a slow linear degradation phase of a repressor protein followed by
a short production phase (firing) and resetting to a normalized value. The oscillators
are coupled via a global repressor field. Before each firing, a group of oscillators may
accumulate at the zero level until the global repression is sufficiently reduced, and then
fire together. If that is the case, the clustered elements subsequently evolve in sync.
This model is qualitatively similar to the well-known integrate-and-fire (IF) model in
Neuroscience (Burkitt 2006). The main difference is that here firing is triggered by
a global repressor field (that involves the entire population state), rather than only by
the local membrane potential.

Our model first introduced in Fernandez and Tsimring (2011) assumes that the
time-dependent repressor protein concentration xi (t) ∈ [0, 1] (t ∈ R

+) of the i th DF
oscillator (i ∈ {1, . . . , N }) linearly degrades with unit rate in time, or remains constant
(until further notice) if it has reached 0 i.e.

ẋi =
{

−1 if xi > 0

0 if xi = 0
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Typical trajectories of coupled degrade-and-fire oscillators 1629

Moreover, when the locally averaged concentration χi (t) defined by

χi (t) = (1 − εη)xi (t) + εη

N

N∑
j=1

x j (t),

(where 0 < ε < 1/η is the coupling strength parameter) reaches the (small) thresh-
old η > 0 (i.e. χi (t) = η), the i th oscillator fires and its concentration is reset to 1,
i.e. xi (t+) = 1. This model exhibits a phenomenology similar to systems of pulse-
coupled oscillators with inhibitory interaction (except for the population size N = 2
it has a unique globally stable periodic trajectory with positive phase shift), and its
global properties are amenable to rigorous analytical study for populations of any size
N ∈ N.
The analysis in Fernandez and Tsimring (2011) showed that every trajectory must be
asymptotically periodic and every periodic orbit is entirely determined by its cluster
distribution (i.e. the distribution of oscillators into groups of synchronized elements).
Moreover, there exists a critical coupling strength ε∗(N ) = 2N

N−2 up to which every
cluster distribution (or more correctly, every possible periodic orbit) can be reached,
depending on the initial condition. The threshold ε∗(N ) converges to ε∗ = 2 in the
thermodynamic limit N → ∞. Beyond ε∗(N ), another regime takes place where only
distributions containing at least one group of extensive size (i.e. proportional to N )
perdure.
In Fernandez and Tsimring (2011), we also analytically computed the maximal number
Kmax of asymptotic clusters. While this number is equal to N for ε � ε∗(N ), it
is approximatively given by N (1 − √

1 − ε∗(N )/ε) in the strongly coupled phase
ε > ε∗(N ) (and remains extensive for every coupling intensity).

In this paper, we investigate related properties for the trajectories initiated from ran-
dom, fully dispersed initial conditions (i.e. such that xi �= x j when i �= j). According
to numerical simulations, for ε � ε∗, their dynamical behavior is similar to as before
and the asymptotic number of clusters appears to be equal (or close) to N . Yet, a
striking difference appears at large coupling as the number of aggregated clusters typ-
ically shrinks to a small intensive quantity (i.e. bounded above by a integer that is
independent of N ), see Fig. 1.
Based on these observations, we have developed a rigorous mathematical analysis of
the coupling-dependent dynamics of populations of arbitrary size N . Our study mostly
consists in estimating the size of aggregating clusters before consecutive firings. The
main tools are the Central Limit Theorem (whose main consequence here is given in
Appendix A), the approximation of continuous increasing functions by finitely many
strictly increasing ones (Appendix B), and some explicit computations of probability
estimates.

2 Dynamics of degrade-and-fire oscillators: main results

According to evolution rules stipulated by the model, the trajectory t �→ {xi (t)}N
i=1

is globally well-defined for every initial condition such that χi (0) > η for all i =
1, . . . , N . Moreover, the dynamics has the following basic properties.
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1630 B. Fernandez, L. S. Tsimring

Fig. 1 Number of clusters in the asymptotic regime as a function of ε for η = 0.01 and three different
population sizes N = 102, 103, 104: point symbols indicate simulation results for 1,000 different sets of
random initial conditions {xi }N

i=1 drawn from the uniform distribution in the hypercube [η, 1]N ; dashed
lines show the mean number of clusters obtained by averaging over 1,000 simulations, and the solid lines
the number of clusters obtained for the trajectory initiated from the configuration with equi-distributed
concentrations xi = η + (1 − η) i−1

N−1 , i = 1, . . . , N . Lines with circles show the upper bound (maximum

possible number of clusters ∼ N (1 − √
1 − ε∗(N )/ε), see text). The right panel shows the zoomed region

near the transition point ε∗ = 2

• In every trajectory, each oscillator must fire indefinitely.
• If xi (t∗) = x j (t∗) for some t∗ � 0, then xi (t) = x j (t) for all t > t∗ (cluster

invariance).
• If xi (0) �= x j (0) and xi (t∗) = x j (t∗) = 0 for some t∗ � 0 while χi (t∗) > η and

χ j (t∗) > η, then xi (t) = x j (t) for all t > t∗ (cluster formation).

The latter mechanism is the only way two initially distinct oscillator concentrations
can merge together. In particular, if imin denotes the oscillator with lowest initial
concentration and if {xi }N

i=1 denotes the initial configuration at t = 0, the property
that xi ∈ [0, 1] for all i implies the following inequality

χimin(ximin) = εη

N

N∑
j=1

(x j − ximin) � εη.

Therefore we have χimin(ximin) � η when ε � 1, which means that oscillator imin fires
before any other oscillator can merge with it. In other words, no clustering occurs for
ε � 1.
On the other hand, massive merging of oscillators is expected when ε is close to
1/η, because all local averages χi are close to each other. Nonetheless, no simple
global estimate can be obtained in this domain because the size of the aggregating
clusters actually depend on the initial configuration. More generally, the conditions
under which, oscillators that are initially dispersed, will (or will not) gather in the
course of the dynamics, require elaborated considerations; so does any evaluation on
the number of asymptotic clusters.
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Typical trajectories of coupled degrade-and-fire oscillators 1631

To address these issues, we need some technical preliminaries. By grouping together
oscillators with identical concentrations, the population configuration at time t can be
depicted by the vector {(nk, xk)(t)}K

k=1 where

• K � N is the total number of clusters
• nk(t) ∈ {1, . . . , N } denotes the size of cluster k (a cluster of size 1 means an

isolated oscillator;
∑K

k=1 nk(t) = N )
• xk(t) is the corresponding concentration.

The vector {nk} itself is called the cluster distribution. In this viewpoint, group sizes
nk(t) remain unaffected in time unless two groups k and k′ merge together before a
firing event.
The dynamics can be described by using the so-called firing map acting on configu-
rations after firings. Thanks to the permutation symmetry, any ordering in the vector
{(nk, xk)} is irrelevant here. When defining the firing map, we choose to consider
monotonically ordered values of xk .
Thus we assume that x1 < x2 < · · · < xK−1 < xK = 1 for the initial configuration
(with arbitrary cluster distribution {nk}K

k=1). In order to maintain this ordering in time,
we include cyclic permutations of indices in the action of the firing map.
Letting t f be the first firing time and K f be the number of clusters that merge together

before this event. The firing map writes {(nk, xk)}K
k=1 �→ {(nk, xk)(t f +)}K−K f +1

k=1
where the updated configuration reads

(nk, xk)(t f +) =
{

(nk+K f , xk+K f − t f ) if k = 1, . . . , K − K f

(n1 + · · · + nK f , 1) if k = K − K f + 1

(which is also suitably ordered, i.e. x1(t f +) < x2(t f +) < · · · < xK−K f (t f +) <

xK−K f +1(t f +) = 1).
Our aim is to analyze the fate of trajectories initiated from random initial con-

figurations with fully dispersed cluster distribution (i.e. nk = 1 for k = 1, . . . , N ).
In this case, there is only to specify the initial concentrations xk (bearing in mind
that xN = 1). For simplicity, we assume that the ordered configuration x = {xk}N−1

k=1
(which is identified with {(1, xk)}N

k=1) is randomly chosen with uniform probability
distribution in

TN :=
{

x = {xk}N−1
k=1 : η < x1 < x2 < · · · < xN−1 < 1

}
.

More precisely, we consider the (Borel) probability measure μ on TN such that, for
every measurable subset A ⊂ TN , we have

μ(A) = αN LebN−1(A),

where LebN−1 is the (N − 1)-dimensional Lebesgue measure of A and αN > 0 is a
normalizing constant. A reasoning in the end of Appendix A shows that the equality
μ(TN ) = 1 imposes αN = (N−1)!

(1−η)N−1 .
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1632 B. Fernandez, L. S. Tsimring

With these technical considerations provided, we can proceed to the analysis of
clustering properties at successive firings. (Clearly, for every initial configuration in
TN , the corresponding trajectory is globally well-defined.) Given � ∈ N, let K� be the
size of the firing cluster at the �th firing event. More precisely, K1 (resp. t1) is the
quantity K f (resp. t f ) defined above when computed for a configuration x ∈ TN ; K2

is nothing but K f when evaluated for the configuration {(nk, xk)(t1+)}K−K1+1
k=1 after

the 1st firing, and so on.
Lemma 1 in Fernandez and Tsimring (2011) implies that absolutely no clustering
occurs (viz. K� = 1 for all � ∈ N) when ε � N

N−2 . (In view of the property mentioned

above about the dynamics in the domain ε � 1, notice that N
N−2 is (slightly) larger

than 1; hence the property here is an improvement of the previous one.)
To some extent, this threshold ε = N

N−2 appears to be sharp because Fernandez and

Tsimring (2011) also showed that, when ε > N
N−2 and N is sufficiently large, there

exists an open subset of TN for which K1 > 1. Notwithstanding this evidence, for the
random process here, firings without clustering persist almost surely in the thermo-
dynamic limit, while ε remains smaller than 2

1+η
. This property is formally stated in

the next statement. (Throughout the paper, P denotes the probability distribution of
a random variable.)

Proposition 2.1 For every ε < 2
1+η

and � ∈ N, we have lim
N→∞ P(Ki = 1 for i =

1, . . . , �) = 1.

For completeness, we mention that, for every N > 2 and ε < ε∗(N ) = 2N
N−2 � 2,

the firing map has a stable fixed point in TN (Fernandez and Tsimring 2011). Every
trajectory in TN that never clusters (i.e. such that K� = 1 for all � ∈ N) converges to
this fixed point. In particular, this is the case for all trajectories initiated from initial
conditions in a set of positive measure μ (viz. the fixed point has positive basin of
attraction). We do not know if the basin measure remains positive in the thermodynamic
limit N → +∞.
All proofs are given in the sections below. Of note, there is no restriction on the
threshold parameter η here other than to make sure that the inequality ε < 1/η holds
in every statement. This is indeed the case when η is sufficiently small; for instance
η < 1/20 suffices.

The statistical behavior remarkably changes past ε = 2
1+η

, as extensive merging
of clusters appears, again with probability 1 in the limit of large N . Let �· stands for
the floor function.

Proposition 2.2 (i) For every ε > 2
1+η

, there exist 0 < ρ
1

< ρ1 < 1 such that

lim
N→∞ P(�ρ

1
N � K1 � �ρ1 N) = 1.

(ii) There also exists ρ2 > 0 such that lim
N→∞ P(K2 � �ρ2 N) = 1.

When ε > 2N
N−2 , the maximum number Kmax of clusters in the limit of large times

mentioned in the introduction, is realized by the periodic orbit associated with the
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Typical trajectories of coupled degrade-and-fire oscillators 1633

cluster distribution holding a single group of extensive size n1 = N − Kmax + 1
(and all other groups having a single individual, i.e. nk = 1 for k = 2, . . . , Kmax)
(Fernandez and Tsimring 2011). Statement (ii) in Proposition 2.2 implies that the
basin of attraction of this orbit in TN must have vanishing measure as N → +∞.
Therefore, this periodic configuration with Kmax clusters can hardly be observed in
large populations.

Extensive merging of clusters may become so important that the first two firings
can absorb the entire population and the resulting distribution can consist of only two
clusters. Our last result states that this phenomenon occurs with positive probability,
provided that the coupling is sufficiently large.

Proposition 2.3 There exists εc > 2
1+η

such that for every ε > εc, we have

lim inf
N→∞ P(K1 + K2 = N ) > 0.

To be more concrete, the proof below actually shows that when ε exceeds 20, we
have P(K1 + K2 = N ) � 1/2 for N sufficiently large. Notice that full synchrony
(i.e. all clusters merging into a single group) can not be expected in this system
because no collapse onto a unique cluster can ever occur (see comment in Sect. 3.1
below).

In the case where K1 + K2 < N , the size K3 of the cluster firing at the third event
must also be extensive, with larger fraction K3/N when (K1 + K2)/N is smaller,
and this property applies to subsequent firings (see Lemma 5.2 in Sect. 5.2 below).
Of note, any probabilistic statement providing some extensive estimate on K3 (and on
subsequent cluster sizes) requires control of the measure of the configuration set for
which (K1 + K2)/N is uniformly bounded from above. This lies beyond the scope of
this paper.
On the other hand, as suggested by Fig. 1, we believe in the existence of a strictly
sequence {ε�}�∈N such that for every � > 1 and every ε > ε�, we have N� = N
with positive (full) probability, where N� = ∑�

i=1 Ki denotes the accumulated reset
population size at �th firing. This conjecture is also motivated by the fact that,
for every ε > 2

1−η
, the asymptotic number of clusters becomes intensive for the

trajectory started from the initially equidistant configuration xi = η + (1 −η) i−1
N−1 for

i = 1, . . . , N . (see Appendix C).

3 Analytic expressions for the size of merging cluster at successive firings

As mentioned in the introduction, our strategy of proof consists in estimating the size of
merging clusters before successive firings, depending on the initial configuration and
on the coupling strength. In this section, we first establish a general formula that holds
for an arbitrary configuration {(nk, xk)}K

k=1. Then we apply the resulting expression
to fully dispersed initial conditions {(1, xk)}N

k=1 and their iterates under the firing
map.
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1634 B. Fernandez, L. S. Tsimring

3.1 Size of the first firing cluster for an arbitrary initial configuration

Let {(nk, xk)}K
k=1 be an ordered initial configuration with arbitrary nk ∈ {1, . . . , N }

such that
∑K

k=1 nk = N . We claim that the size of the first firing group is given by∑K f
k=1 nk where

K f = max

⎧⎨
⎩ j ∈ {1, . . . , K } : ε

N

K∑
k= j+1

nk(xk − x j ) � 1

⎫⎬
⎭ (1)

is the number of merging clusters. In addition, the following comments apply.

• We have K f � K − 1 because the sum in expression (1) vanishes for j = K .
This implies that no cluster distribution (with K � 2) can ever shrink to a single
component vector (K = 1).

• The quantity ε
N

∑K
k= j+1 nk(xk −x j ) decreases as j increases between 1 and K −1.

• In the case where ε
N

∑K
k=2 nk(xk − x1) < 1 (i.e. when all quantities in the expres-

sion of K f in Eq. (1) are < 1), we set K f = 1 because the first firing occurs before
x1 reaches 0 as already observed. In that way, the number K f is well-defined in
all cases.

Proof of expression (1) of K f . According to the previous comment, we can assume
that ε

N

∑K
k=2 nk(xk − x1) � 1, i.e. x1 reaches 0 before oscillator 1 fires. If, for some

j � 2, the coordinate x j also reaches 0 before oscillator 1 fires, then by monotonicity
all lower coordinates for i = 1, . . . , j − 1 must also vanish. During the time interval
defined by x j � t < x j+1, we have

χi (t) = χ1(t) = εη

N

K∑
k= j+1

nk(xk − t) for i = 1, . . . , j.

This expression holds until these quantities reach η or x j+1 reaches 0, whichever
occurs first. In the first case, a firing takes place at time t j given by χ j (t j ) = η viz.

t j =
∑K

k= j+1 nk xk − N/ε∑K
k= j+1 nk

(2)

and this happens iff t j < x j+1. If otherwise t j � x j+1, then we need to check the
inequality t j+1 < x j+2, and possibly repeat the process until the inequality ti < xi+1
holds for some i ∈ {1, . . . , K − 1}. This must eventually happen because tK−1 < 1.
Accordingly, the first firing time of the trajectory initiated with the (arbitrary) config-
uration {(nk, xk)}K

k=1 is given by t f = tK f where the quantity in relation (2) is to be
computed with index
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K f := max{ j ∈ {1, . . . , K } : t j−1 � x j }.

A direct calculation shows that the expression of K f here is equivalent to the one

in relation (1). The size of the firing cluster is evidently
∑K f

k=1 nk . Of note, we have

shown that the inequality ε
N

∑K
k=2 nk(xk − x1) � 1—which necessarily holds when

K f > 1—implies t f < xK f +1 and

t f � xK f . (3)

We shall often rely on this inequality in the proofs below.

3.2 Cluster sizes at successive firings for initial configurations in TN

Cluster sizes at successive firings can now simply be computed by applying the expres-
sion (1) to successive population configurations under iterations of the firing map.
Here, we implement this procedure for trajectories started on totally dispersed initial
configurations {(1, xk)}N

k=1 (which, again, are identified with x = {xk}N−1
k=1 ∈ TN ).

In this case, the quantity K1 = K f ({(1, xk)}N
k=1) is the size of the cluster that fires

first. Its explicit expression is

K1 = max

⎧⎨
⎩ j ∈ {1, · · · , N } : ε

N

N∑
k= j+1

(xk − x j ) � 1

⎫⎬
⎭ ,

let also t1 := tK1 (i.e. t1 = t j with j = K1 in expression (2)) be the first
firing time. The population configuration immediately after this first event writes
{(nk, xk)(t1+)}N−K1+1

k=1 where

(nk, xk)(t1+) =
{

(1, xK1+k − t1) if k = 1, . . . , N − K1

(K1, 1) if k = N − K1 + 1

Similarly, let K2 = K f ({(nk, xk)(t1+)}N−K1+1
k=1 ). Direct calculations show that K2 is

given by (notice that we must have K2 � N − K1)

K2 = max

⎧⎨
⎩ j ∈ {1, . . . , N −K1} : 1

N

N∑
k=K1+ j+1

xk −
(

1− j

N

)
xK1+ j + K1

N
(1 + t1) � 1/ε

⎫⎬
⎭ .

Let t2 = tK2 be the time interval between the first and second firings. The second
iterated of the firing map is given by {(nk, xk)(t1 + t2+)}N−K1−K2+2

k=1 where

(nk, xk)(t1 + t2+) =

⎧⎪⎨
⎪⎩

(1, xK1+K2+k − t1 − t2) if k = 1, . . . , N − K1 − K2

(K1, 1 − t2) if k = N − K1 − K2 + 1

(K2, 1) if k = N − K1 − K2 + 2
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(Obviously, the first line here does not exist when N2(= K1 + K2) = N .)
For subsequent firings, we proceed by induction. Let � ∈ N and suppose that the

sizes {Ki }�i=1 have already been computed. For our purpose, it is sufficient to follow the

induction only while N� = ∑�
i=1 Ki < N ; this condition ensures that merging only

involve individual oscillators (and not groups of oscillators that have already fired).
In this case, letting T� = ∑�

i=1 ti be the time of the �th firing event, the population

configuration immediately after that event writes {(nk, xk)(T�+)}N−N�+�
k=1 where

(nk, xk)(T�+) =
{

(1, xN�+k − T�) if k = 1, . . . , N − N�

(Ki , 1 − T� + Ti ) if k = N − N� + i, i = 1, . . . , �
(4)

(One can check that this expression is well-defined and the coordinates xk(T�+) are
monotonically ordered.) Then, the size K�+1 at the next firing is given by

K�+1 = max

⎧⎨
⎩ j ∈ {1, . . . , N − N�} : 1

N

N∑
k=N�+ j+1

xk

−
(

1 − j

N

)
xN�+ j +

�∑
i=1

Ki

N
(1 + Ti ) � 1/ε

}
. (5)

One can check that if N�+1 < N , then the next iterated {(nk, xk)(T�+1+)}N−N�+1+�+1
k=1

is given by the analogue of expression (4) where � is replaced by � + 1. The induc-
tion then follows while the number N� of oscillators that have fired remains smaller
than N .

4 Dispersed populations at small coupling: proof of Proposition 2.1

In this section, we assume that ε < 2
1+η

and N > 2. The proof of Proposition 2.1
separates the analysis of the first firing event to that of the subsequent ones. Given
δ > 0, let

TN ,δ =
{

x ∈ TN :
∣∣∣∣∣ 1

N

N∑
k=1

xk − 1 + η

2

∣∣∣∣∣ < δ

}
. (6)

The size of the first firing cluster for a dispersed initial configuration x ∈ TN is
given by K1 = K f (x). We are going to show that K1 = 1 for every x ∈ TN ,

2−ε(1+η)
2ε

.

Lemma 7.1 in Appendix A implies that the measure μ(TN ,
2−ε(1+η)

2ε

) converges to 1 in

the thermodynamics limit N → ∞. The conclusion of Proposition 2.1 will follow for
� = 1.
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The assumption x1 > η > 0 implies the inequality 1
N

∑N
k=2(xk − x1) = 1

N

∑N
k=1

(xk − x1) < 1
N

∑N
k=1 xk . Moreover, the condition x ∈ TN ,

2−ε(1+η)
2ε

yields

1

N

N∑
k=1

xk <
1 + η

2
+ 2 − ε(1 + η)

2ε
= 1/ε.

It follows that 1
N

∑N
k=2(xk − x1) < 1/ε from which the equality K1 = 1 (and the

inequality x1 > t1) result, as commented in Sect. 3.1.
Consider now an arbitrary number � � 2 of firings and let accordingly N > �.

We are going to show by induction that Ki = 1 for i = 1, . . . , � for the successive
cluster sizes, for every x ∈ TN ,

2−ε(1+η)
2ε

such that xk > k−1
N for k = 2, . . . , �. When

the inequality N � ��/η� holds (where �·� stands for the ceiling function), the latter
condition holds for every x ∈ TN ,

2−ε(1+η)
2ε

because the smallest coordinate satisfies

x1 > η � �/N . As said before, the measure μ(TN ,
2−ε(1+η)

2ε

) converges to 1 in the

thermodynamic limit. Hence, the conclusion of Proposition 2.1 will be granted for
every � ∈ N and the proof will be complete.
The induction actually proves that Ki = 1 and xi fires prior reaching 0 (i.e. xi > Ti )
for i = 1, . . . , �. For � = 1, the properties K1 = 1 and x1 > T1 = t1 have been
proved above. Assume now that the property holds up to some � � 1. Then, we have
N� = � and the definition (5) of K�+1 shows that a sufficient condition for K�+1 = 1
and x�+1 > T�+1 is

1

N

N∑
k=�+2

xk −
(

1 − 1

N

)
x�+1 +

�∑
i=1

1

N
(1 + Ti ) < 1/ε

Using that 1
N

∑N
k=�+2 xk = 1

N

∑N
k=1 xk − 1

N

∑�+1
k=1 xk and 1

N

∑N
k=1 xk < 1/ε for

every x ∈ TN ,
2−ε(1+η)

2ε

(see above), it suffices to check the inequality

− 1

N

�+1∑
k=1

xk −
(

1 − 1

N

)
x�+1 +

�∑
i=1

1

N
(1 + Ti ) < 0.

The inequalities Ti < xi for i = 1, . . . , � imply in turn that it is sufficient to impose
−x�+1 + �

N < 0, which is exactly the constraint required above.

5 Massive clustering at strong coupling

In this section, we take ε > 2
1+η

and we prove separately statement (i) and (ii) of
Proposition 2.2, and Proposition 2.3.
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1638 B. Fernandez, L. S. Tsimring

5.1 Extensive clustering at first firing: proof of Proposition 2.2, statement (i)

Let δε = min
{

1
ε
,

ε(1+η)−2
4ε

}
> 0. We are going to prove the existence of ρ

1
< ρ1 ∈

(0, 1) and Mε ∈ N such that, for every N > Mε , we have

�ρ
1
N� � K1 � �ρ1 N,

for every x ∈ TN ,δε/3 (recall the definition of TN ,δ in relation (6) above). As before,
Lemma 7.1 implies that the measure μ(TN ,δε/3) approaches 1 in the thermodynamic
limit and Proposition 2.2, statement (i) will follow (also using the inequality �· � �·�).

By Proposition 8.1 in Appendix B, there exists a finite collection {x(i,δε/3)}iδε /3
i=1 of

continuous strictly increasing functions that δε/3-approximates piecewise affine con-
tinuous increasing functions from [0, 1] into itself. For each i , let the function Yi,ε be
defined by

Yi,ε(ω) =
1∫

ω

(x(i,δε/3)(θ) − x(i,δε/3)(ω)) dθ, ∀ω ∈ [0, 1].

Each function ω �→ Yi,ε(ω) is strictly decreasing. Indeed,

• as the integral of a summable function, the derivative of ω �→ ∫ 1
ω

x(i,δε/3)(θ)dθ =
−x(i,δε/3)(ω) exists for almost every ω ∈ [0, 1], see e.g. Kolmogorov and Fomin
(1999).

• Moreover, as an increasing function, the derivative of ω �→ −(1−ω)x(i,δε/3)(ω) =
−(1−ω)x′

(i,δε/3)(ω)+x(i,δε/3)(ω) also exists for almost every ω ∈ [0, 1], see again
Kolmogorov and Fomin (1999).

Therefore, there exists a subset A ⊂ [0, 1] with full Lebesgue measure such that for
every ω ∈ A, the derivative of ω �→ Yi,ε(ω) = −(1−ω)x′

(i,δε/3)(ω) < 0 exists, hence
strict monotonicity of ω �→ Yi,ε(ω).
By compactness of [0, 1], each function Yi,ε is uniformly continuous. Accordingly,
there exists νε > 0 such that

|ρ − ρ′| < νε �⇒ |Yi,ε(ρ) − Yi,ε(ρ
′)| < δε/3,∀i ∈ {1, . . . , iδε/3}.

Now, let Mε = max{� 1
νε

�, � 3
2δε

}, let N > Mε and let x ∈ TN ,δε/3 be given. Let xlin
be the linear interpolation of x , viz. xlin is the piecewise affine continuous function
from [0, 1] into itself defined by

xlin(0) = 0, xlin(k/N ) = xk and xlin is affine in the interval [(k − 1)/N , k/N ]
for each k ∈ {1, . . . , N }.
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Proposition 8.1 states that the family {x(i,δε/3)}iδε /3
i=1 constitutes a δε/3-net of the

linear interpolations xlin. Accordingly, there exists ix ∈ {1, . . . , iδε/3} such that the
supremum norm |xlin − x(ix ,δε/3)‖∞ < δε/3.

Lemma 5.1 We have∣∣∣∣∣∣
1

N

N∑
k=�ρN�+1

(xk − x�ρN�) − Yix ,ε(ρ)

∣∣∣∣∣∣ < δε, ∀ρ ∈ (0, 1).

Proof of the Lemma Let j ∈ {1, . . . , N − 1} be fixed. The sum 1
N

∑N
k= j+1 xk can be

regarded as the integral
∫ 1

j/N xsup(θ) dθ (Riemann sum) where xsup is the step function
defined by

xsup(ω) = xk, ∀ω ∈ ((k − 1)/N , k/N ], k ∈ {1, . . . , N }.

On the other hand, on each interval [(k−1)/N , k/N ], the function xlin is affine between
xk−1 (resp. 0 if k = 0) and xk . Hence, the integral

∫ k/N
(k−1)/N (xsup(θ) − xlin(θ)) dθ

represents the area of the triangle between xlin and xsup in this interval. Accordingly,
we have

k/N∫
(k−1)/N

(xsup(θ) − xlin(θ)) dθ = xk − xk−1

2N

and by summing over k ∈ { j + 1, . . . , N }, this implies the inequalities

1∫
j/N

xlin(θ) dθ � 1

N

N∑
k= j+1

xk �
1∫

j/N

xlin(θ) dθ + 1

2N
. (7)

Together with the estimate ‖xlin − x(ix ,δε/3)‖∞ < δε/3, the left inequality here yields

1

N

N∑
k= j+1

(xk − x j ) > Yix ,ε

(
j

N

)
− 2δε/3. (8)

Now, the definition of Mε and the condition N > Mε imply
∣∣∣ �ρN�

N − ρ

∣∣∣ < 1/N < νε

for all ρ ∈ (0, 1). By definition of νε , it results that

Yix ,ε

(�ρN�
N

)
> Yix ,ε(ρ) − δε/3, ∀ρ ∈ (0, 1).

Letting j = �ρN� in the inequality (8), one of the two inequalities in the statement
follows, namely
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1

N

N∑
k=�ρN�+1

(xk − x�ρN�) > Yix ,ε(ρ) − δε.

On the other hand, the right inequality in (7) together with ‖xlin − x(ix ,δε/3)‖∞ <

δε/3 implies

1

N

N∑
k= j+1

(xk − x j ) < Yix ,ε

(
j

N

)
+ δε,

from which the second inequality of the Lemma immediately follows by taking again
j = �ρN� and by using strict monotonicity of ω �→ Yix ,ε(ω). ��

Independently of Lemma 5.1, the right inequality in relation (7) above (more pre-
cisely, its extension to j = 0) and the inequality 1

2N < δε

3 (which holds for every
N > Mε) imply

1∫
0

xlin(θ) dθ >
1 + η

2
− 2δε/3, ∀x ∈ TN ,δε/3.

The inequality ‖xlin − x(ix ,δε/3)‖∞ < δε/3 and the definition of δε then yield

Yix ,ε(0) − δε >
1 + η

2
− 2δε = 1/ε.

By continuity of ω �→ Yix ,ε(ω), we are sure that the quantity ρ
ix

defined by

ρ
ix

= max
{
ω ∈ [0, 1] : Yix ,ε(ω) − δε � 1/ε

}
,

is positive. By Lemma 5.1, for every x ∈ TN ,δε/3, we conclude that

ε

N

N∑
k=�ρ

ix
N�+1

(xk − x�ρ
ix

N�) � 1,

i.e. K1 � �ρ
ix

N�. Consequently, the inequality K1 � �ρ
1
N� holds with ρ

1
=

min ρ
ix

> 0 where the minimum is taken over all x(ix ,δε/3) that lie at distance less
than δε/3 of the linear interpolation of some configuration x ∈ TN ,δε/3. (Positivity of
ρ

1
is granted by the fact that there are finitely many ρ

ix
> 0.)

On another hand, we have Yix ,ε(1) = 0 and δε < 1/ε; hence the quantity ρix

defined by

ρix
= max{ω ∈ [0, 1] : Yix ,ε(ω) + δε � 1/ε},
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is certainly smaller than 1. By Lemma 5.1 and strict monotonicity of the function Yix ,ε ,
we get

ε

N

N∑
k=�ρN�+1

(xk − x�ρN�) < 1, ∀ρ > ρix
.

i.e. K1 < �ρN� for all ρ > ρix
. By taking the right limit ρ → ρ+

ix
, we conclude that

K1 � �ρ1 N where ρ1 = max ρix
< 1. The proof is complete.

5.2 Extensive clustering at subsequent firings: proof of Proposition 2.2, statement (ii)

This section focuses on establishing the following extensive clustering property at any
firing.

Lemma 5.2 For every ρ, ω ∈ (0, 1), there exists ρ∗ > 0 and N∗ ∈ N such that, for
any N > N∗, � < N and x ∈ TN so that

• K1 � �ρN�,
• Ki > 1 for i = 2, . . . , �,
• N� � �ωN,

we have K�+1 � �ρ∗N.

Clearly, by statement (i) of Proposition 2.2, statement (ii) immediately follows from
applying Lemma 5.2 with ρ = ρ

1
and ω = ρ1.

Proof of Lemma 5.2 The first step is to obtain a simple lower estimate for the size
K�+1. This step relies on the inequality T� � xN�

which is granted by the assumption
Ki > 1 for i = 1, . . . , �. Indeed, the inequality T1 = t1 � xK1 = xN1 is nothing but
the inequality (3) at the end of Sect. 3.1 applied to the first firing here, and the latter is
ensured by assumption K1 > 1. For subsequent firings i = 2, . . . , �, the constraints
Ki > 1 for i = 2, . . . , � similarly yield ti � xNi−1+Ki − Ti−1 from where the desired
inequality follows for i = �.
Using the definition of K�, the ordering xk < xk+1 and the inequality T� � xN�

, the
quantity involved in the definition (5) of K�+1 can be bounded as follows

1

N

N∑
k=N�+ j+1

xk −
(

1 − j

N

)
xN�+ j +

�∑
i=1

Ki

N
(1 + Ti )

� 1/ε − 1

N

N�+ j∑
k=N�+1

xk +
(

1 − K�

N

)
xN�

−
(

1 − j

N

)
xN�+ j + K�

N
(1 + T�)

> 1/ε + xN�
− xN�+ j + K�

N

It results that

K�+1 � max

{
j ∈ {1, · · · , N − N�} : xN�+ j � xN�

+ K�

N

}
. (9)
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Now, the assumption N� � �ωN necessarily implies Ni � �ωN for i = 1, . . . , �

and, if we assume by induction that the conclusion already holds for i = 1, . . . , �−1,
we get the existence of ρ′(ρ, ω) such that

min
i=1,...,�

Ki � �ρ′(ρ, ω)N.

In particular, we can ascertain that K�

N > 0.9ρ′(ρ, ω) provided that N is sufficiently
large, say N > N∗.

Let δ < 0.9ρ′(ρ, ω) and consider the collection {x(i,δ/2)}iδ/2
i=1 given by Proposition 8.1.

By uniform continuity, there exists ρ∗ > 0 such that

x(i,δ/2)(α+ρ∗) � x(i,δ/2)(α)+0.9ρ′(ρ, ω)−δ, ∀α�ω ∧ (1−ρ∗), i ∈ {1, . . . , iδ/2}.

Let ix be such that ‖xlin − x(ix ,δ/2)‖∞ < δ/2 where xlin is the linear interpolation of x
(see previous section). The definition of ix implies x(ix ,δ/2)(

N�

N ) − δ/2 < xN�
. Using

monotonicity, we also have

xN�+�ρ∗ N = xlin

(
N� + �ρ∗N

N

)
< x(ix ,δ/2)

(
N�

N
+ ρ∗

)
+ δ/2.

The definition of ρ∗ and the assumption N� � �ωN then yield

xN�+�ρ∗ N < x(ix ,δ/2)

(
N�

N

)
− δ/2 + 0.9ρ′(ρ, ω) � xN�

+ K�

N

from where the estimate (9) immediately implies the desired conclusion. ��

5.3 Intensive asymptotic number of clusters: proof of Proposition 2.3

We begin by establishing a sufficient condition for intensive asymptotic number of
clusters. Given x ∈ TN , the ordering xk < xk+1 implies that the quantity involved
in the definition (5) of K�+1 is strictly decreasing with j . Accordingly, the relation
N�+1 = N holds if, when computed with j = N − N�, this quantity is not smaller
than 1/ε, viz.

�∑
i=1

Ki

N
Ti � 1/ε,

Assuming the inequalities Ti � xKi (which hold under the condition of Lemma 5.2),
it follows that one only has to check that

∑�
i=1

Ki
N xKi � 1/ε.

Focusing now on the proof of Proposition 2.3, we assume � = 1. Thanks to the
inequality (3) at the end of Sect. 3.1, the property K1 � �ρ

1
N in statement (i) of

Proposition 2.2 implies that lim
N→∞ P(T1 � xK1) = 1 for every ε > 2

1+η
. Therefore,
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in order to prove Proposition 2.3 (that is to say lim inf
N→∞ P(N2 = N ) > 0) it suffices to

show that

lim inf
N→∞ P

(
K1

N
xK1 � 1/ε

)
> 0,

provided that ε is sufficiently large. As we shall see below, a sufficient condition is
εα2

ε > 1 where αε = ε(1+η)−2
4ε

. This condition holds when

ε > εc := 2(5 + η) + 4
√

6 + 2η

(1 + η)2

and εc < 1/η provided that η is small enough. Explicit calculations show that η < 1/20
works and this explains the inequality η < 1/20 in the comments after Proposition 2.1
in Sect. 2.

For a configuration x ∈ TN , the ordering xk < xk+1 implies that the quantity
involved in the definition of K1 in Sect. 3.2 can be bounded from below as follows

1

N

N∑
k= j+1

(xk − x j ) = 1

N

N∑
k=1

xk − 1

N

j∑
k=1

xk −
(

1 − j

N

)
x j � 1

N

N∑
k=1

xk − x j

It results that K1 � max{ j ∈ {1, . . . , N } : x j � 1
N

∑N
k=1 xk − 1/ε}. In particular, for

a configuration x ∈ TN ,αε , the relation 1+η
2 − 1/ε − αε = αε proffers the following

estimate

K1 � max{ j ∈ {1, . . . , N } : x j � αε}.

By using this inequality, we aim to estimate the probability of K1
N xK1 � 1/ε in the

thermodynamic limit.
Let x ∈ TN ,αε be such that xm � αε < xm+1 for some m ∈ {0, . . . , N − 1}. For
such configuration, we obviously have K1 � m. If in addition, we can ensure that
xm � N

εm , then we would have K1
N xK1 � 1/ε as desired. Therefore, all we have to do

is to estimate the probability that

N

εm
� xm � αε < xm+1.

for those values of m ∈ {0, . . . , N − 1} such that m > N
εαε

. The condition εα2
ε > 1

guarantees that the latter holds for every m ∈ {�αε N + 1, . . . , N − 1} (provided that
N is large enough). Moreover, the inequality N

εm > η holds for every such m (and thus
we have η < αε) thanks to the assumption ε < 1/η. Hence, we aim to estimate the
quantity
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μ

⎛
⎝ N−1⋃

m=�αε N+1

{
x ∈ TN ,αε : N

εm
� xm � αε < xm+1

}⎞⎠

Thanks to Lemma 7.1, assuming that x ∈ TN instead of x ∈ TN ,αε in this probability
does not affect its asymptotic value in the thermodynamic limit N → ∞. By the
definition of the measure μ and the fact that the sets in the union are pair-wise disjoint,
we finally have to compute

(N − 1)!
(1 − η)N−1

N−1∑
m=�αε N+1

LebN−1

{
x ∈ TN : N

εm
� xm � αε < xm+1

}
(10)

Since LebN−1 is a product measure, each element in this sum writes as the product
I m I m where

I m =
αε∫

N
εm

⎛
⎝ xm∫

η

⎛
⎝ xm−1∫

η

⎛
⎝· · ·

⎛
⎝ x3∫

η

⎛
⎝ x2∫

η

dx1

⎞
⎠ dx2

⎞
⎠ · · ·

⎞
⎠ dxm−2

⎞
⎠ dxm−1

⎞
⎠ dxm

=
αε∫

N
εm

(xm − η)m−1

(m − 1)! dxm = (αε − η)m − ( N
εm − η

)m
m!

and

I m =
1∫

αε

⎛
⎝ 1∫

xm+1

⎛
⎝· · ·

⎛
⎝ 1∫

xN−3

⎛
⎝ 1∫

xN−2

dxN−1

⎞
⎠ dxN−2

⎞
⎠ · · ·

⎞
⎠ dxm+2

⎞
⎠ dxm+1

= (1 − αε)
N−m−1

(N − m − 1)!

where we used the change of variables yi = 1 − xi for i = m + 1, . . . , N − 1 in the
last computation. Expression (10) then becomes

N−1∑
m=�αε N+1

(
N − 1

m

)(
αε − η

1 − η

)m (
1 − αε − η

1 − η

)N−m−1
(

1 −
(

N
εm − η

αε − η

)m)

We have

(
N
εm − η

αε − η

)m

<

( 1
εαε

− η

αε − η

)αε N

, ∀m � �αε N + 1.
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The inequality εα2
ε > 1 implies that, for every β ∈ (0, 1), there exists Nβ ∈ N such

that

1 −
( 1

εαε
− η

αε − η

)αε N

� 1 − β, ∀N � Nβ.

Accordingly, for N � Nβ , we have

(N − 1)!
(1 − η)N−1

N−1∑
m=�αε N+1

LebN−1

{
x ∈ TN : N

εm
� xm � αε < xm+1

}

� (1 − β)

N−1∑
m=�αε N+1

(
N − 1

m

)(
αε − η

1 − η

)m (
1 − αε − η

1 − η

)N−m−1

� (1 − β)

N−1∑
m=�

(
αε−η
1−η

)
N+1

(
N − 1

m

)(
αε − η

1 − η

)m (
1 − αε − η

1 − η

)N−m−1

where the last inequality follows from the fact that αε < 1. This number is actually
smaller than 1/4; hence the last sum is certainly not smaller than the similar sum
that starts from m = � N−3

2 . However, for every α ∈ (0, 1), the binomial coefficient
symmetry m ↔ N − 1 − m implies that

N−1∑
m=� N−3

2 

(
N − 1

m

)
αm(1 − α)N−m−1 � 1

2

N−1∑
m=0

(
N − 1

m

)
αm(1 − α)N−m−1 = 1

2

It results that the measure (10) must be at least 1/2 when N > Nβ and the Proposition
follows.

6 Conclusion

Clustering and synchronization dynamics of coupled biological oscillators is a well-
known phenomenon observed in a variety of contexts from neuronal assemblies to
heart tissues and populations of fireflies (Golomb et al. 1992; Pikovsky et al. 2003).
Recently, the dynamics of coupled gene oscillators emerged as a subject of active
research (Danino et al. 2010; Gonze et al. 2005). These oscillators periodically vary
levels of proteins in individual cells, however they can be sensitive to extracellular bio-
chemical regulators and thus synchronize their behavior. Furthermore, recent advances
in synthetic biology made it possible to engineer specific mechanisms of (co-operative)
coupling among gene oscillators that can lead to synchronization across large popula-
tions (Danino et al. 2010; Prindle et al. 2012; Yamaguchi et al. 2003). In most cases,
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coupling is provided by global activators, such as the well-known bacterial quorum-
sensing agent AHL (Acyl-Homoserine Lactone) (Danino et al. 2010) or through direct
synaptic coupling among neuronal cells (Yamaguchi et al. 2003).

On the other hand, co-repressive interactions received comparatively less attention
(Brunel and Hakim 1999; Ernst et al. 1995; Tsimring et al. 2005; Van Vreeswijk et
al. 1994), although they provide an effective mechanism of controlling the behavior
of gene oscillators and can be used in synthetic biology (Prindle et al. 2012). In this
paper, we obtained mathematically rigorous results on the clustering dynamics of large
co-repressively coupled populations of degrade-and-fire oscillators.
In the limit of fast production (“firing”) and slow degradation of the repressor pro-
teins, the behavior of an individual DF oscillator can be modeled by discontinu-
ous dynamics where the protein concentration decays linearly and jumps back to
the initial state when it reaches a certain threshold. The co-repressive coupling is
achieved when the threshold value depends on the global level of the repressor pro-
tein. When this dependence is weak, the oscillators remain in a dispersed regime
where each keeps its own distinct phase. However, increasing coupling strength leads
to increased tendency for oscillators to fire simultaneously and form synchronized
clusters.

We proved the existence of a sharp transition of the clustering properties of almost
every trajectory in the thermodynamic limit, that reflects the abrupt change in the
global dynamics of all trajectories. At the transition, the dynamics switches from a
regime where the populations remain dispersed after an arbitrary large number of
firings, to a strongly coupled phase where clusters of extensive size are formed imme-
diately. For even stronger couplings, with finite probability as N → ∞, clustering is
extremely intense and the asymptotic population is shown to consist of a few giant
clusters.
In summary, our results show that the dynamics of random orbits in populations of
globally coupled DF oscillators is amenable to an extensive mathematical analy-
sis across the coupling parameter range, for populations of arbitrary size (see Lee
DeVille et al. 2010 for a similar global analysis of a random cellular automa-
ton with global coupling). Altogether, they confirm the numerical observations and
show that the coupling-induced phase transition that globally affects the dynamics in
phase space, can be identified in the dynamics of typical trajectories of large pop-
ulations. Based on our theoretical predictions, we anticipate that by tuning of the
coupling strength (for example by varying cell density) various clustering regimes
could be observed in experiments with repressively coupled synthetic gene oscilla-
tors. This behavior contrasts with the more typical phenomenology in the case of a
co-operative interaction, where instead of clustering, global synchronization usually
occurs.
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Appendix A: Mean estimates for configurations in TN

Throughout the proofs, we use the following estimate on the mean 1
N

∑N
k=1 xk for a

subset of configurations {xk}N−1
k=1 ∈ TN that has arbitrarily large probability measure.

The estimate is a straightforward consequence of the Central Limit Theorem. It can
be stated as follows. Recall that the symbol P denotes the law of a random variable.

Lemma 7.1 For every δ ∈ (0, 1), we have lim
N→∞ P(| 1

N

∑N
k=1 xk − 1+η

2 | < δ) = 1.

Proof Let N ∈ N, N > 1 be fixed and for every configuration x = {xk}N−1
k=1 , let

SN−1(x) = 1
N−1

N−1∑
k=1

xk . The quantity SN−1 is regarded as a random variable with

law P.
Consider now the random process in the hypercube [η, 1]N−1 endowed with the uni-
form measure (1 − η)−(N−1)LebN−1. For this process, the law of SN−1 is simply
(1−η)−(N−1)LebN−1 ◦ S−1

N−1. A standard argument (presented at the end of this proof

below) shows that we have P = (1 − η)−(N−1)LebN−1 ◦ S−1
N−1.

For the process in the hypercube, the quantity SN−1 appears to be the normalized
sum of i.i.d. random variables xi with Lebesgue distribution in [η, 1]. The correspond-
ing mean value is 1+η

2 and the variance is finite. By the Central Limit Theorem, we
conclude that for every p ∈ (0, 1) there exists cp > 0 and Np ∈ N such that

P

(∣∣∣∣SN−1 − 1 + η

2

∣∣∣∣ � cp/
√

N − 1

)

= (1 − η)−(N−1)LebN−1

(∣∣∣∣SN−1 − 1 + η

2

∣∣∣∣ � cp/
√

N − 1

)
> p, ∀N > Np.

In particular, for every δ ∈ (0, 1), we can ensure that |SN−1 − 1+η
2 | < δ/2 holds

with probability larger than p, provided that N > max{Np, (2cp/δ)
2 + 1} (so that

we also have cp/
√

N − 1 < δ/2). Furthermore, the normalization xN = 1 yields the
following inequality

∣∣∣∣∣ 1

N

N∑
k=1

xk − 1 + η

2

∣∣∣∣∣ �
∣∣∣∣SN−1(x) − 1 + η

2

∣∣∣∣+ 1

N
(1 − SN−1(x)), ∀x ∈ TN .

By taking N > max{Np, (2cp/δ)
2 + 1, 2/δ} (so that we also have 1/N < δ/2), we

can be sure that | 1
N

∑N
k=1 xk − 1+η

2 | < δ whenever |SN−1 − 1+η
2 | < δ/2. The Lemma

then immediately follows.
It remains to show the equality of laws P = (1 − η)−(N−1)LebN−1 ◦ S−1

N−1. First,
notice that we have

LebN−1 ◦ S−1
N−1 = LebN−1 ◦ (SN−1|CN−1)

−1 where CN−1

=
{

x ∈ [0, 1]N−1 : i �= j ⇒ xi �= x j

}
.
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Indeed, any subset of [η, 1]N−1 \ CN−1 has vanishing LebN−1 measure. Moreover,
we have SN−1 ◦σ = SN−1 for every permutation of coordinates σ . Consequently, the
following decomposition holds for every ω ∈ [η, 1]

(SN−1|CN−1)
−1(ω) =

⋃
σ∈�N−1

σ ◦ (SN−1|TN )−1(ω)

where�N−1 is the set of all permutations. By construction, the setsσ◦(SN−1|TN )−1(ω)

are pairwise disjoints. In addition, they all have the same LebN−1 measure because per-
muting coordinates does not affect the volume. Since there are (N −1)! permutations,
it results that for every ω ∈ [η, 1], we have

LebN−1 ◦ S−1
N−1(ω)=(N −1)!LebN−1 ◦ (SN−1|TN )−1(ω)= (N − 1)!

αN
P(SN−1 = ω),

where the last equality follows from the definition of the uniform distribution in Sect. 2.
By integrating over [η, 1], normalization then implies (N−1)!

αN (1−η)N−1 = 1, viz. (1 −
η)−(N−1)LebN−1 ◦ S−1

N−1 = P as desired. ��

Appendix B: Compactness of the set of increasing functions

Throughout the proofs, we also often need to approximate the piecewise affine inter-
polation xlin of a configuration x ∈ TN by a continuous and strictly increasing function
chosen in a finite collection. Such approximation relies on the following statement.
Let ‖ · ‖∞ denote the uniform norm of a function defined on [0, 1].
Proposition 8.1 For every δ > 0, there exists a finite collection {x(i,δ)}iδ

i=1 of contin-
uous and strictly increasing functions such that, for every piecewise affine continuous
increasing function x, there exists i ∈ {1, . . . , iδ} such that ‖x − x(i,δ)‖∞ < δ.

This statement is a consequence of a similar property in the weaker L1-norm, which
we denote by ‖ · ‖1.

Lemma 8.2 For every δ > 0, there exists a finite collection {x(i,δ)}iδ
i=1 of continuous

strictly increasing functions such that, for every piecewise affine continuous increasing
function x, there exists i ∈ {1, . . . , iδ} such that ‖x − x(i,δ)‖1 < δ.

Proof of Lemma By Helly Selection Theorem (Kolmogorov and Fomin 1999), the
set of (right continuous) increasing functions from [0, 1] into itself is compact for
the L1-topology. Hence, for every δ > 0, there exists a finite collection {x̃(i,δ)}iδ

i=1 of
(right continuous) increasing functions such that, for every piecewise affine continuous
increasing function x, there exists i ∈ {1, . . . , iδ} such that ‖x − x̃(i,δ)‖1 < δ/2.
Let h be a strictly increasing continuous function from [−1, 1] onto [0, 1]. Then for
each extended function x̃(i,δ) on [−1, 1] (where x̃(i,δ)(ω) = 0 for ω < 0), consider the
function x(i,δ) defined by the normalized convolution

x(i,δ)(ω) = (x̃(i,δ) ∗ h)(ω)

(x̃(i,δ) ∗ h)(1)
, ∀ω ∈ [0, 1]
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where (u ∗h)(ω) = ∫ ω

ω−1 u(ω−θ) dh(θ) (Lebesgue–Stieltjes integral). Each function
x(i,δ) is continuous and strictly increasing from [0, 1] onto itself. Moreover, by taking
h sufficiently close to the Heaviside function H , one can ensure that ‖x(i,δ)−x̃(i,δ)‖1 <

δ/2 for every i ∈ {1, . . . , iδ} and the Lemma follows.
Indeed, if the sequence {hn}n∈N pointwise converges to H on [−1, 1], Helly Con-
vergence Theorem (Kolmogorov and Fomin 1999) implies that the sequence {(u ∗
hn)(ω)}n∈N converges to (u ∗ H)(ω) = u(ω) for every ω ∈ [0, 1]. Lebesgue domi-
nated convergence then yields

lim
n→∞

1∫
0

(u ∗ hn)(ω)

(u ∗ hn)(1)
dω =

1∫
0

u

from which the desired L1-bound on the difference x(i,δ) − x̃(i,δ) easily follows. ��
Proof of Proposition 8.1 According to the Lemma, it suffices to show that if {xn}n∈N

is a sequence of (strictly) increasing functions such that lim
n→∞ ‖x − xn‖1 = 0 where x

is continuous, then lim
n→∞ ‖x − xn‖∞ = 0. The proof is similar to that of Lemma B.3

in Coutinho and Fernandez (2004).
By contradiction, assume there exist δ > 0 and a subsequence {xni }i∈N (with lim

i→∞ ni =
∞) such that

‖x − xni ‖∞ � δ, ∀i ∈ N.

Accordingly, there exists ωi ∈ [0, 1] for every i such that

either x(ωi ) � xni (ωi ) + δ or x(ωi ) � xni (ωi ) − δ.

By taking a subsequence if necessary, we can assume to have either x(ωi ) � xni (ωi )+δ

for all i ∈ N or x(ωi ) � xni (ωi ) − δ for all i ∈ N.
Assume to be in the first case. The second case can be treated similarly. Since ωi ∈
[0, 1] for all i , there exists a convergent subsequence. W.l.o.g. assume that we have
lim

i→∞ ωi = ω∞.

By compactness, the function x is uniformly continuous. Let then γ > 0 be small
enough so that we have

|x(ω) − x(ω + γ )| < δ/2, ∀ω ∈ [0, 1 − γ ].

Let now ω̃ ∈ (ω∞ − δ/2, ω∞) be such that lim
i→∞ xni (ω̃) = x(ω̃). (The existence of ω̃

is a consequence of L1-convergence.) Convergence to ω∞ and the choice of ω̃ imply
that we simultaneously have

|ωi − ω∞| < γ/2 and ω̃ < ωi , and hence|ω̃ − ωi | < γ,
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provided that i is sufficiently large. The last inequality implies that x(ω̃) − δ/2 �
x(ωi ) − δ and thus x(ω̃) − δ/2 � xni (ωi ) by the initial assumption. Monotonicity of
the xni and the middle inequality above then yield x(ω̃) − δ/2 � xni (ω̃). By taking
the limit i → ∞, we obtain from the convergence at ω̃ that −δ/2 � 0, which is
impossible.

Appendix C: Intensive number of clusters for trajectories starting on equidistant
configurations

In this section, we examine the fate at strong coupling, of trajectories initiated from
equidistant configurations (or initial conditions close to equidistant configurations)
and prove that their asymptotic number of clusters must be intensive. This property is
an immediate consequence of the following technical statement.

Lemma 9.1 Let ε > 2
1−η

and consider the trajectory started from xi = η + (1 −
η) i−1

N−1 (i = 1, . . . , N ).

(i) For every � ∈ N and there exist ρ� ∈ (0, 1) and M� ∈ N such that for every
N > M�, the cluster size K� at �th firing satisfies K� � �ρ�N�, unless the
accumulated reset size K1 + · · · + K� = N.

(ii) We have ρ�+1 > ρ� for every �.

Naturally, property (ii) implies the existence of Lε such that
Lε∑

�=1
ρ� � 1. Property

(i) then forces K1 + · · · + KLε = N for every N > MLε . Thus, for every N ∈ N,
when starting from the equidistant configuration, the asymptotic number of clusters
cannot exceed max{Lε, Mε}.

With a bit of additional effort, one can show that a similar upper bound applies to
every trajectory started from configurations in some �∞-neighborhood of the equidis-
tant configuration. (However, this neighborhood has vanishing measure μ in the ther-
modynamics limit.) Therefore, our result indicates that for every ε > 2

1−η
(a threshold

that is larger but close to 2
1+η

), for every population size, there is positive probability
μ to obtain an intensive number of clusters in the long time limit.

Proof We begin by showing the extensive bound on the size K1 of the first firing
cluster. Explicit calculations show that the quantity involved in the definition of K1 in
Sect. 3.2 is given by

1

N

N∑
k= j+1

(xk − x j ) = 1 − η

2

(
1 − j

N

)(
1 − j − 2

N − 1

)
.

Using j−2
N−1 <

j
N yields K1 � max{ j ∈ {1, . . . , N } : (1 − j

N )2 � (1 − ρ1)
2} where

ρ1 ∈ (0, 1) is such that (1−ρ1)
2 = 2

(1−η)ε
. This quantity ρ1 exists for every ε > 2

1−η
.

It follows that K1 � �ρ1 N� for all N ∈ N as desired.
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For � > 1, we proceed by induction. Assume that we have already proved that for
i = 1, . . . , �, we have Ki � �ρi N� with ρi ∈ (0, 1) provided that N is sufficiently
large. Then, the reasoning at the beginning of the proof of Lemma 5.2 applies here;
hence Eq. (9) is a lower bound for KL+1. Using the expression of the equidistant
configuration, it easily follows that K�+1 � � ρ�

1−η
(N − 1) (provided that K1 +

· · · K� + � ρ�

1−η
(N − 1) � N ).

Let then M�+1 be sufficiently large so that � ρ�

1−η
(N − 1) � � ρ�

1−1.1η
N� for all N >

M�+1. Then, we clearly have KL+1 � �ρ�+1 N� for all N > M�+1 , where ρ�+1 =
ρ�

1−1.1η
> ρ�. The induction follows. ��
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