Skip to main content
Log in

Propagation of CaMKII translocation waves in heterogeneous spiny dendrites

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

CaMKII (Ca2+-calmodulin-dependent protein kinase II) is a key regulator of glutamatergic synapses and plays an essential role in many forms of synaptic plasticity. It has recently been observed experimentally that stimulating a local region of dendrite not only induces the local translocation of CaMKII from the dendritic shaft to synaptic targets within spines, but also initiates a wave of CaMKII translocation that spreads distally through the dendrite with an average speed of order 1μm/s. We have previously developed a simple reaction–diffusion model of CaMKII translocation waves that can account for the observed wavespeed and predicts wave propagation failure if the density of spines is too high. A major simplification of our previous model was to treat the distribution of spines as spatially uniform. However, there are at least two sources of heterogeneity in the spine distribution that occur on two different spatial scales. First, spines are discrete entities that are joined to a dendritic branch via a thin spine neck of submicron radius, resulting in spatial variations in spine density at the micron level. The second source of heterogeneity occurs on a much longer length scale and reflects the experimental observation that there is a slow proximal to distal variation in the density of spines. In this paper, we analyze how both sources of heterogeneity modulate the speed of CaMKII translocation waves along a spiny dendrite. We adapt methods from the study of the spread of biological invasions in heterogeneous environments, including homogenization theory of pulsating fronts and Hamilton–Jacobi dynamics of sharp interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer SM, Rinzel J (1991) Propagation of dendritic spikes mediated by excitable spines: a continuum theory. J Neurophysiol 65: 874–890

    Google Scholar 

  • Ballesteros-Yanez I, Benavides-Piccione R, Elston GN, Yuste R, De Felipe J (2006) Density and morphology of dendritic spines in mouse neocortex. Neuroscience 138: 403–409

    Article  Google Scholar 

  • Barria A, Derkach V, Soderling T (1997a) Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionic acid glutamate receptor. J Biol Chem 272: 32727–32730

    Article  Google Scholar 

  • Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997b) Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKII during long-term potentiation. Science 276: 2042–2045

    Article  Google Scholar 

  • Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411: 801–805

    Article  Google Scholar 

  • Bayer KU et al (2006) Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 26: 1164–1174

    Article  Google Scholar 

  • Berestycki H, Hamel F, Roques L (2005) Analysis of the periodically fragmented environment model: II-biological invasions and pulsating travelling fronts. J Math Biol 51: 75–113

    Article  MathSciNet  MATH  Google Scholar 

  • Bressloff PC, Earnshaw BA (2007) Diffusion-trapping model of receptor trafficking in dendrites. Phys Rev E 75: 041915

    Article  MathSciNet  Google Scholar 

  • Bressloff PC (2009) Cable theory of protein receptor trafficking in dendritic trees. Phys Rev E 79: 041904

    Article  MathSciNet  Google Scholar 

  • Brunet E, Derrida D (1997) Shift in the velocity of a front due to a cutoff. Phys Rev E 56: 2597–2604

    Article  MathSciNet  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley, Chichester

    MATH  Google Scholar 

  • Coombes S, Bressloff PC (2000) Solitary waves in a model of dendritic cable with active spines. SIAM J Appl Math 61: 432–453

    Article  MathSciNet  MATH  Google Scholar 

  • Coombes S, Bressloff PC (2003) Saltatory waves in the spike-diffuse-spike model of active dendrites. Phys Rev Lett 91: 4028102

    Article  Google Scholar 

  • Coombes S, Laing C R (2011) Pulsating fronts in periodically modulated neural field models. Phys Rev E 83: 011912

    Article  MathSciNet  Google Scholar 

  • Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionate type glutamate receptors. Proc Natl Acad Sci USA 96: 3269–3274

    Article  Google Scholar 

  • Earnshaw BA, Bressloff PC (2010) Diffusion-activation model of CaMKII translocation waves in dendrites. J Comput Neurosci 28: 77–89

    Article  MathSciNet  Google Scholar 

  • El Smaily M, Hamel F, Roques L (2009) Homogenization and influence of fragmentation in a biological invasion model. Discrete Contin Dyn Syst Series A 25: 321–342

    Article  MathSciNet  MATH  Google Scholar 

  • Evans LC, Sougandis PE (1989) A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ Math J 38: 141–172

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7: 353–369

    Google Scholar 

  • Freidlin MI (1985) Limit theorems for large deviations and reaction–diffusion equations. Ann Probab 13: 639–675

    Article  MathSciNet  MATH  Google Scholar 

  • Freidlin MI (1986) Geometric optics approach to reaction–diffusion equations. SIAM J Appl Math 46: 222–232

    Article  MathSciNet  MATH  Google Scholar 

  • Frey U, Morris R (1997) Synaptic tagging and long-term potentiation. Nature 385: 533–536

    Article  Google Scholar 

  • Fukunaga K, Stoppini L, Miyamoto E, Muller D (1993) Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268: 7863–7867

    Google Scholar 

  • Fukunaga K, Muller D, Miyamoto E (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem 270: 6119–6124

    Article  Google Scholar 

  • Gardoni F et al (1998) Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem 71: 1733–1741

    Article  Google Scholar 

  • Gartner J, Freidlin MI (1979) On the propagation of concentration waves in periodic and random media. Sov Math Dokl 20: 1282–1286

    Google Scholar 

  • Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM Kinase may underlie decoding of calcium signal. Neuron 12: 943–956

    Article  Google Scholar 

  • Hudmon A, Schulman H (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71: 473–510

    Article  Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75: 17–29

    Article  Google Scholar 

  • Kinezaki N, Kawasaki K, Takasu F, Shigesada N (2003) Modeling biological invasions into periodically fragmented environments. Theor Popul Biol 64: 291–302

    Article  MATH  Google Scholar 

  • Kolmogorov A, Petrovsky I, Piscounoff N (1937) Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Mosc Univ Bull Math 1: 1–25

    Google Scholar 

  • Konur S, Rabinowitz D, Fenstermaker VL, Yuste R (2003) Systematic regulation of spine sizes and densities in pyramidal neurons. J. Neurobiol. 56: 95–112

    Article  Google Scholar 

  • Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458: 299–304

    Article  Google Scholar 

  • Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW (1999) Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 96: 3239–3244

    Article  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3: 175–190

    Article  Google Scholar 

  • Lledo PM et al (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci USA 92: 11175–11179

    Article  Google Scholar 

  • Lou LL, Lloyd SJ, Schulman H (1986) Activation of the multifunctional Ca 2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci USA 83: 9497–9501

    Article  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21

    Article  Google Scholar 

  • Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245: 862–866

    Article  Google Scholar 

  • Mammen AL, Kameyama K, Roche KW, Huganir RL (1997) Phosphorylation of the α-amino-3-hydroxyl-5-methyl-isoxazole-4-proprionic acid receptor GluR1 subunit by calcium/calmodulin-dependent protein kinase II. J Biol Chem 272: 32528–32533

    Article  Google Scholar 

  • Mendez V, Fort J, Rotstein HG, Fedotov S (2003) Speed of reaction–diffusion fronts in spatially heterogeneous media. Phys Rev E 68: 041105

    Article  MathSciNet  Google Scholar 

  • Meunier C, d’Incamps BL (2008) Extending cable theory to heterogeneous dendrites. Neural Comput 20: 1732–1775

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer T, Shen K (2000) In and out of the postsynaptic region: signalling proteins on the move. Trends Cell Biol 10: 238–244

    Article  Google Scholar 

  • Miller SG, Kenney MB (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca 2+-triggered molecular switch. Cell 44: 861–870

    Article  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Berlin

    Book  MATH  Google Scholar 

  • Noble JV (1974) Geographic and temporal development of plagues. Nature 250: 726–729

    Article  Google Scholar 

  • Otmakhov N, Griffith LC, Lisman JE (1997) Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J Neurosci 17: 5357–5365

    Google Scholar 

  • Panja D (2004) Effects of fluctuations on propagating fronts. Phys Rep 393: 87–174

    Article  Google Scholar 

  • Pettit DL, Perlman S, Malinow R (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266: 1881–1885

    Article  Google Scholar 

  • Rich RC, Schulman H (1998) Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 273: 28424–28429

    Article  Google Scholar 

  • Rose J, Jin S-X, Craig AM (2009) Heterosynaptic molecular dynamics: locally induced propagating synaptic accumulation of CaM Kinase II. Neuron 61: 351–358

    Article  Google Scholar 

  • Saitoh T, Schwartz JH (1985) Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J Cell Biol 100: 835–842

    Article  Google Scholar 

  • Shen K, Tereul MN, Subramanian K, Meyer T (1998) CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron 21: 593–606

    Article  Google Scholar 

  • Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor simulation. Science 284: 162–166

    Article  Google Scholar 

  • Shen K, Teruel MN, Connor JH, Shenolikar S, Meyer T (2000) Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat Neurosci 3: 881–886

    Article  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments. Theor Popul Biol 30: 143–160

    Article  MathSciNet  MATH  Google Scholar 

  • Strack S, Choi S, Lovinger DM, Colbran RJ (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem 272: 13467–13470

    Article  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials. Springer, New York

    Book  MATH  Google Scholar 

  • van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386: 29–222

    Article  MATH  Google Scholar 

  • Volpert V, Petrovskii S (2009) Reaction–diffusion waves in biology. Phys Life Rev 6: 267–310

    Article  Google Scholar 

  • Weinberger HF (2002) On spreading speeds and traveling waves for growth and migration in a periodic habitat. J Math Biol 45: 511–548

    Article  MathSciNet  MATH  Google Scholar 

  • Xin J (2000) Front propagation in heterogeneous media. SIAM Rev 42: 161–230

    Article  MathSciNet  Google Scholar 

  • Yang E, Schulman H (1999) Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J Biol Chem 274: 26199–26208

    Article  Google Scholar 

  • Yuste R (2010) Dendritic spines. MIT Press, Cambridge

    Google Scholar 

  • Zhang Y-P, Holbro N, Oertner TG (2008) Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII. Proc Natl Acad Sci USA 105: 12039–12044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressloff, P.C. Propagation of CaMKII translocation waves in heterogeneous spiny dendrites. J. Math. Biol. 66, 1499–1525 (2013). https://doi.org/10.1007/s00285-012-0542-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0542-9

Keywords

Mathematics Subject Classification

Navigation