Skip to main content
Log in

RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Although accurate details in RNA structure are of great importance for understanding RNA function, the backbone conformation is difficult to determine, and most existing RNA structures show serious steric clashes (≥ 0.4 Å overlap) when hydrogen atoms are taken into account. We have developed a program called RNABC (RNA Backbone Correction) that performs local perturbations to search for alternative conformations that avoid those steric clashes or other local geometry problems. Its input is an all-atom coordinate file for an RNA crystal structure (usually from the MolProbity web service), with problem areas specified. RNABC rebuilds a suite (the unit from sugar to sugar) by anchoring the phosphorus and base positions, which are clearest in crystallographic electron density, and reconstructing the other atoms using forward kinematics. Geometric parameters are constrained within user-specified tolerance of canonical or original values, and torsion angles are constrained to ranges defined through empirical database analyses. Several optimizations reduce the time required to search the many possible conformations. The output results are clustered and presented to the user, who can choose whether to accept one of the alternative conformations.

Two test evaluations show the effectiveness of RNABC, first on the S-motifs from 42 RNA structures, and second on the worst problem suites (clusters of bad clashes, or serious sugar pucker outliers) in 25 unrelated RNA structures. Among the 101 S-motifs, 88 had diagnosed problems, and RNABC produced clash-free conformations with acceptable geometry for 71 of those (about 80%). For the 154 worst problem suites, RNABC proposed alternative conformations for 72. All but 8 of those were judged acceptable after examining electron density (where available) and local conformation. Thus, even for these worst cases, nearly half the time RNABC suggested corrections suitable to initiate further crystallographic refinement. The program is available from http://kinemage.biochem.duke.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Cryst. D. 58: 1948–1954

    Article  Google Scholar 

  2. Adams P.L., Stahley M.R., Kosek A.B., Wang J., Strobel S.A. (2004). Crystal structure of a self-splicing group I intron with both exons. Nature 430(6995): 45–50

    Article  Google Scholar 

  3. Arendall W.B. III., Tempel W., Richardson J.S., Zhou W., Wang S., Davis I.W., Lin Z.J., Rose J.P., Carlson W.M., Lou M., Richardson D.C., Wang B.C. (2005). A test of enhancing model accuracy in high throughput crystallography. J. Struct. Funct. Genomics 6(1): 1–11

    Article  Google Scholar 

  4. Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289(5481): 905–920

    Article  Google Scholar 

  5. Batey R.T., Gilbert S.D., Montange R.K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432(7015): 411–415

    Article  Google Scholar 

  6. Berman H.M., Olson W.K., Beveridge D.L., Westbrook J., Gelbin A., Demeny T., Hsieh S.H., Srinivasan A.R., Schneider B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63(3): 751–759

    Article  Google Scholar 

  7. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000). The protein data bank. Nucleic Acids Res. 28(1): 235–242

    Article  Google Scholar 

  8. Brunger A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355: 472–475

    Article  Google Scholar 

  9. Brunger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., Read R.J., Rice L.M., Simonson T., Warren G.L. (1998). Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D. 54: 905–921

    Article  Google Scholar 

  10. Canutescu A.A., Dunbrack R.L. Jr. (2003). Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12(5): 963–972

    Article  Google Scholar 

  11. Chen J.L., Greider C.W. (2004). Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem. Sci. 29(4): 183–192

    Article  Google Scholar 

  12. Claverie J.M. (2005). Fewer genes, more non-coding RNA. Science 309(5740): 1529–1530

    Article  Google Scholar 

  13. Correll C.C., Beneken J., Plantinga M.J., Lubbers M., Chan Y.L. (2003). The common and distinctive features of the bulged-G motif based on a 1.04 Å resolution RNA structure. Nucleic Acids Res. 31(23): 6806–6818

    Article  Google Scholar 

  14. Crick F. (1970). Central dogma of molecular biology. Nature 227(5258): 561–563

    Article  Google Scholar 

  15. Davis I.W., Murray L.W., Richardson J.S., Richardson D.C. (2004). MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32: W615–W619

    Article  Google Scholar 

  16. Doudna J.A., Cech T.R. (2002). The chemical repertoire of natural ribozymes. Nature 418(6894): 222–228

    Article  Google Scholar 

  17. Duarte C.M., Wadley L.M., Pyle A.M. (2003). RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 31(16): 4755–4761

    Article  Google Scholar 

  18. Emsley P., Cowtan K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60: 2126–2132

    Article  Google Scholar 

  19. Ferre-D’Amare A.R., Zhou K., Doudna J.A. (1988). Crystal structure of a hepatitis delta virus ribozyme. Nature 395: 567–574

    Google Scholar 

  20. Frank J. (2003). Electron microscopy of functional ribosome complexes. Bipolymers 68(2): 223–233

    Article  Google Scholar 

  21. Golden B.L., Kim H., Chase E. (2005). Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 12(1): 82–89

    Article  Google Scholar 

  22. Hansen J.L., Moore P.B., Steitz T.A. (2003). Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330(5): 1061–1075

    Article  Google Scholar 

  23. Huang D.B., Vu D., Cassiday L.A., Zimmerman J.M., Maher L.J. III., Ghosh G. (2003). Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. USA 100(16): 9268–9273

    Article  Google Scholar 

  24. Jones T.A., Zou J.Y., Cowan S.W., Kjeldgaard M. (1991). Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A. 47: 110–119

    Article  Google Scholar 

  25. Jovine L., Djordjevic S., Rhodes D. (2000). The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg(2+) in 15-year-old crystals. J. Mol. Biol. 301(2): 401–414

    Article  Google Scholar 

  26. Klein D.J., Ferre-D’Amare A.R. (2006). Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313(5794): 1752–1756

    Article  Google Scholar 

  27. Klein D.J., Moore P.B., Steitz T.A. (2004). The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340(1): 141–177

    Article  Google Scholar 

  28. Klein D.J., Schmeing T.M., Moore P.B., Steitz T.A. (2001). The kink-turn: a new RNA secondary structure motif. EMBO. J. 20(15): 4214–4221

    Article  Google Scholar 

  29. Kleywegt G.J., Harris M.R., Zou J.Y., Taylor T.C., Wahlby A., Jones T.A. (2004). The Uppsala electron-density server. Acta Cryst. D. 60: 2240–2249

    Article  Google Scholar 

  30. Klosterman P.S., Tamura M., Holbrook S.R., Brenner S.E. (2002). SCOR: a structural classification of RNA database. Nucleic Acids Res. 30: 392–394

    Article  Google Scholar 

  31. Kolk M.H., van der Graaf M., Wijmenga S.S., Pleij C.W., Heus H.A., Hilbers C.W. (1998). NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science 280(5362): 434–438

    Article  Google Scholar 

  32. Krissinel, E.: CCP4 coordinate library project. http://www.ebi.ac.uk/∼keb/cldoc/ (2004)

  33. Leontis N.B., Altman R.B., Berman H.M., Brenner S.E., Brown J.W., Engelke D.R., Harvey S.C., Holbrook S.R., Jossinet F., Lewis S.E., Major F., Mathews D.H., Richardson J.S., Williamson J.R., Westhof E. (2006). The RNA ontology consortium: an open invitation to the RNA community. RNA 12(4): 533–541

    Article  Google Scholar 

  34. Lilley D.M. (2005). Structure, folding and mechanisms of ribozymes. Curr. Opin. Struct. Biol. 15(3): 313–323

    Article  Google Scholar 

  35. Lolle S.J., Victor J.L., Young J.M., Pruitt R.E. (2005). Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434(7032): 505–509

    Article  Google Scholar 

  36. Lovell S.C., Davis I.W., Arendall W.B. III., de Bakker P.I.W., Word J.M., Prisant M.G., Richardson J.S., Richardson D.C. (2003) Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins Struct. Funct. Genet. 50: 437–450

    Article  Google Scholar 

  37. Lukavsky P.J., Kim I., Otto G.A., Puglisi J.D. (2003). Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10(12): 1033–1038

    Article  Google Scholar 

  38. Martick M., Scott W.G. (2006). Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126(2): 309–320

    Article  Google Scholar 

  39. Mattick J.S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO. Rep. 2: 986–991

    Article  Google Scholar 

  40. McCarthy J.M. (1990). Introduction to theoretical kinematics. MIT Press, Cambridge

    Google Scholar 

  41. McRee D.E. (1999). XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125: 156–165

    Article  Google Scholar 

  42. Morris A.L., MacArthur M.W., Hutchinson E.G., Thornton J.M. (1992). Stereochemical quality of protein structure coordinates. Proteins 12: 345–364

    Article  Google Scholar 

  43. Murray H.L., Jarrell K.A. (1999). Flipping the switch to an active spliceosome. Cell 96: 599–602

    Article  Google Scholar 

  44. Murray L.J., Arendall W.B. III., Richardson D.C., Richardson J.S. (2003) RNA backbone is rotameric. PNAS 100: 13904–13909

    Article  Google Scholar 

  45. Murthy V.L., Srinivasan R., Draper D.E., Rose G.D. (1999). A complete conformational map for RNA. J. Mol. Biol. 291(2): 313–327

    Article  Google Scholar 

  46. Nielson H., Westhof E., Johansen S. (2005). An mRNA is capped by a 2′, 5′ lariat catalyzed by a group I-like ribozyme. Science 309(5740): 1584–1587

    Article  Google Scholar 

  47. Nilsen T.W. (1994). RNA–RNA interactions in the spliceosome: unraveling the ties that bind. Cell 78: 1–4

    Article  Google Scholar 

  48. Nissen P., Hansen J., Ban N., Moore P.B., Steitz T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481): 920–930

    Article  Google Scholar 

  49. Oberstrass F.C., Lee A., Stefl R., Janis M., Chanfreau G., Allain F.H. (2006). Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat. Struct. Mol. Biol. 13(2): 160–167

    Article  Google Scholar 

  50. Parkinson G., Vojtechovsky J., Clowney L., Brünger A.T., Berman H.M. (1996). New parameters for the refinement of nucleic acid containing structures. Acta Crystallogr. D. Biol. Crystallogr. 52: 57–64

    Article  Google Scholar 

  51. Perrakis A., Morris R., Lamzin V.S. (1999). Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6(5): 458–463

    Article  Google Scholar 

  52. Richardson, J.S., Richardson, D.C.: MAGE, PROBE, and Kinemages, Chapter 25.2.8. In: Rossmann, M.G., Arnold, E. (eds.) International Tables for Crystallography, vol. F, pp. 727–730. Kluwer Publishers, Dordrecht (2001)

  53. Salehi-Ashtiani K., Luptak A., Litovchick A., Szostak J.W. (2006). A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313(5794): 1788–1792

    Article  Google Scholar 

  54. Sasisekharan V., Lakshminarayanan A.V. (1969). Stereochemistry of nucleic acids and polynucleotides. VI. Minimum energy conformations of dimethyl phosphate. Biopolymers 8: 505–514

    Article  Google Scholar 

  55. Schluenzen F., Tocilj A., Zarivach R., Harms J., Gluehmann M., Janell D., Bashan A., Bartels H., Agmon I., Franceschi F., Yonath A. (2000). Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102(5): 615–623

    Article  Google Scholar 

  56. Schneider B., Moravek Z., Berman H.M. (2004). RNA conformational classes. Nucleic Acids Res. 32(5): 1666–1677

    Article  Google Scholar 

  57. Serganov A., Polonskaia A., Phan A.T., Breaker R.R., Patel D.J. (2006). Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441(7097): 1167–1171

    Article  Google Scholar 

  58. Soukup J.K., Soukup G.A. (2004). Riboswitches exert genetic control through metabolite-induced conformational change. Curr. Opin. Struct. Biol. 14: 344–349

    Article  Google Scholar 

  59. Stahley M.R., Strobel S.A. (2005). Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309(5740): 1587–1590

    Article  Google Scholar 

  60. Sussman J.L., Kim S. (1976). Three-dimensional structure of a transfer RNA in two crystal forms. Science 192(4242): 853–858

    Article  Google Scholar 

  61. Terwilliger T.C. (2002). Automated structure solution, density modification and model building. Acta Cryst. D. 58: 1937–1940

    Article  Google Scholar 

  62. Tomari Y., Zamore P.D. (2005). Perspective: machines for RNAi. Genes Dev. 19(5): 517–529

    Article  Google Scholar 

  63. Torres-Larios A., Swinger K.K., Krasilnikov A.S., Pan T., Mondragon A. (2005). Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437(7058): 584–587

    Article  Google Scholar 

  64. Wimberly B.T., Brodersen D.E., Clemons W.M. Jr., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T., Ramakrishnan V. (2000) Structure of the 30S ribosomal subunit. Nature 407(6802): 327–339

    Article  Google Scholar 

  65. Winkler W., Nahvi A., Breaker R.R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419(6910): 952–956

    Article  Google Scholar 

  66. Word, J.M.: All-atom small-probe contact surface analysis: an information-rich description of molecular goodness-of-fit. Ph.D. thesis, Duke University, Durham (2000)

  67. Word J.M., Lovell S.C., LaBean T.H., Taylor H.C., Zalis M.E., Presley B.K., Richardson J.S., Richardson D.C. (1999). Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J. Mol. Biol. 285(4): 1711–1733

    Article  Google Scholar 

  68. Word J.M., Lovell S.C., Richardson J.S., Richardson D.C. (1999). Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285(4): 1735–1947

    Article  Google Scholar 

  69. Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. (2001). Crystal structure of the ribosome at 5.5 Å resolution. Science 292(5518): 883–896

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Kapral, G., Murray, L. et al. RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone. J. Math. Biol. 56, 253–278 (2008). https://doi.org/10.1007/s00285-007-0082-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0082-x

Keywords

Mathematics Subject Classification (2000)

Navigation