Skip to main content
Log in

The dynamical way to mutation-selection balance of an infinite population evolving on a truncated fitness landscape

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

This paper presents the exact analytical solution, valid for all generations and initial conditions, for the frequency distribution of haploids with infinite-sites genome carrying a given number of mutations in a population evolving deterministically on a truncated fitness landscape. This landscape is a generalization of the single sharp peak one, widely used in quasispecies theory, although here there are no reverse mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, D., Fontanari, J.F.: A population genetics approach to the quasispecies model. Phys. Rev. E 54, 4048–4053 (1996) Available at http://arxiv.org/abs/cond-mat/9605160

    CAS  Google Scholar 

  2. Baake, E., Gabriel, W.: Biological evolution through mutation, selection, and drift: an introductory review. Ann. Rev. Comp. Phys. 9, In: D. Stauffer (ed.), World Scientific, 2000, pp. 203–264. Available at http://arxiv.org/abs/cond-mat/9907372

  3. Charlesworth, B.: Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. Camb. 55, 199–221 (1990)

    CAS  Google Scholar 

  4. Charlesworth, B., Sniegowski, P., Stephan, W.: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994)

    CAS  PubMed  Google Scholar 

  5. Dawson, K.J.: The dynamics of infinitesimally rare alleles, applied to the evolution of mutation rates and the expression of deleterious mutations. Theor. Pop. Biol. 55, 1–22 (1999)

    CAS  Google Scholar 

  6. Domingo, E., Sabo, D., Taniguchi, T., Weissmann, C.: Nucleotide sequence heterogeneity of an RNA phage population. Cell 13, 735–744 (1978)

    CAS  PubMed  Google Scholar 

  7. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465–523 (1971)

    CAS  PubMed  Google Scholar 

  8. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988); The molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989)

    CAS  Google Scholar 

  9. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics - A Foundation for Computer Science Addison-Wesley, 1994, 2nd edition; http://www.mathpages.com/home/kmath464.htm

  10. Hartl, D.L., Clark, A.G.: Principles of Population Genetics. Sinauer Associates Inc., Sunderland, 1989, 2nd edition

  11. Johnson, T.: The approach to mutation-selection balance in an infinite asexual population, and the evolution of mutation rates. Proc. R. Soc. Lond. B 266 2389–2397 (1999); Theoretical Studies of the Interaction Between Deleterious and Beneficial Mutations (PhD thesis, University of Edinburgh 2000). Available at http://homepages.ed.ac.uk/ tobyj

  12. Kimura, M., Maruyama, T.: The mutational load with epistatic gene interactions in fitness. Genetics 54, 1337–1351 (1966)

    Google Scholar 

  13. Maia, L.P., Botelho, D.F., Fontanari, J.F.: Analytical solution of the evolution dynamics on a multiplicative-fitness landscape. J. Math. Biol. 47, 453–456 (2003)

    PubMed  Google Scholar 

  14. Martinez-Salas, E., Ortin, J., Domingo, E.: Sequence of the viral replicase gene from foot and mouth disease virus C1-Santa Pau (C-S8). Gene 35, 55–61 (1985)

    CAS  PubMed  Google Scholar 

  15. Maynard Smith, J.: Models of evolution. Proc. R. Soc. Lond. B 219, 315–325 (1983)

    Google Scholar 

  16. Nowak, M., Schuster, P.: Error thresholds of replication in finite populations: mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395 (1989)

    CAS  PubMed  Google Scholar 

  17. Ortin, J., Nájera, R., Lopez, C., Davila, M., Domingo, E.: Genetic variability of Hong Kong (H3N2) influenza viruses: spontaneous mutations and their location in the viral genome. Gene 11, 319–331 (1980)

    CAS  PubMed  Google Scholar 

  18. Spiegelman, S., Haruna, I., Holland, I.B., Beaudreau, G., Mills, D.R.: The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc. Natl. Acad. Sci. USA 54, 919–927 (1965)

    CAS  PubMed  Google Scholar 

  19. Swetina, J., Schuster, P.: Self-replication with errors: a model for polynucleotide replication. Biophys. Chem. 16, 329–345 (1982)

    CAS  PubMed  Google Scholar 

  20. Wagner, G.P., Krall, P.: What is the difference between models of error thresholds and Muller’s ratchet? J. Math. Biol. 32, 33–44 (1993)

    Google Scholar 

  21. Wiehe, T.: Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and infinite sites models. Genet. Res. Camb. 69, 127–136 (1997)

    Google Scholar 

  22. Wilke, C.O., Ronnewinkel, C., Martinetz, T.: Dynamic fitness landscapes in molecular evolution. Phys. Rep. 349, 395–446 (2001). Available at http://arxiv.org/abs/physics/9912012

    CAS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo P. Maia.

Additional information

The author acknowledges J. F. Fontanari for critically reading the manuscript and the Brazilian agency FAPESP for financial support. This work was developed while the author was in the Instituto de Física de São Carlos, Universidade de São Paulo, Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, L. The dynamical way to mutation-selection balance of an infinite population evolving on a truncated fitness landscape. J. Math. Biol. 51, 114–122 (2005). https://doi.org/10.1007/s00285-005-0327-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0327-5

Key words or phrases

Navigation