Skip to main content
Log in

On the impossibility of coexistence of infinitely many strategies

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

We investigate the possibility of coexistence of pure, inherited strategies belonging to a large set of potential strategies. We prove that under biologically relevant conditions every model allowing for coexistence of infinitely many strategies is structurally unstable. In particular, this is the case when the “interaction operator” which determines how the growth rate of a strategy depends on the strategy distribution of the population is compact. The interaction operator is not assumed to be linear. We investigate a Lotka-Volterra competition model with a linear interaction operator of convolution type separately because the convolution operator is not compact. For this model, we exclude the possibility of robust coexistence supported on the whole real line, or even on a set containing a limit point. Moreover, we exclude coexistence of an infinite set of equidistant strategies when the total population size is finite. On the other hand, for infinite populations it is possible to have robust coexistence in this case. These results are in line with the ecological concept of “limiting similarity” of coexisting species. We conclude that the mathematical structure of the ecological coexistence problem itself dictates the discreteness of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, P.: Limiting similarity and the form of the competition coefficient. Theor. Pop. Biol. 8, 356–375 (1975)

    Article  Google Scholar 

  2. Abrams, P.: Variability in resource consumption rates and the coexistence of competing strategies. Theor. Pop. Biol. 25, 106–124 (1984)

    Article  Google Scholar 

  3. Abrams, P.: High competition with low similarity and low competeition with high similarity: exploitative and apparent competition in consumer-resource systems. Amer. Nat. 152 (1), 114–128 (1998)

    Article  Google Scholar 

  4. Abrams, P.A.: The theory of limiting similarity. Ann. Rev. Ecol. Syst. 14, 359–376 (1983)

    Article  Google Scholar 

  5. Abrams, P.A.: How should resources be counted? Theor. Pop. Biol. 33, 226–242 (1988)

    Article  Google Scholar 

  6. Armstrong, R.A., McGehee, R.: Competitive exclusion. Am. Nat. 115 (2), 151–170 (1980)

    Article  Google Scholar 

  7. Christiansen, F.B., Fenchel, T.M.: Theories of populations in biological communities. Springer, 1984

  8. Dieckmann, U., Law., R.: The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models: I. Linear theory. J. Math. Biol. 36, 349–388 (1998)

    Google Scholar 

  10. Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models: II. Nonlinear theory. J. Math. Biol. 43, 157–189 (2001)

    Google Scholar 

  11. Diekmann, O., Gyllenberg, M., Metz., J.A.J.: Steady state analysis of structured population models. Theor. Pop. Biol. 63, 309–338 (2003)

    Article  Google Scholar 

  12. Dugundji, J.: Topology. Allyn and Bacon, Inc., Boston, 1966

  13. Geritz, S.A.H.: Evolutionary stable seed polymorhism and small scale spatial variation in seedling density. Am. Naturalist 146, 685–707 (1995)

    Article  Google Scholar 

  14. Geritz, S.A.H.: Coevolution of seed size and seed predation. Evol. Ecol. 12, 891–911 (1998)

    Google Scholar 

  15. Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J.: Evolutionary singular strategies and the adaptive growth and branching of evolutionary trees. Evolutionary Ecology 12, 35–57 (1998)

    Article  Google Scholar 

  16. Geritz, S.A.H., Metz, J.A.J., Kisdi., É., Meszéna, G.: The dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78 (10), 2024–2027 (1997)

    Article  Google Scholar 

  17. Geritz, S.A.H., Metz, J.A.J., Klinkhamer, P.G.L., DeJong, T.J.: Competition in safe sites. Theor. Pop. Biol. 33, 161–180 (1988)

    Article  Google Scholar 

  18. Geritz, S.A.H., van der Meijden, E., Metz, A.J., Johan.: Evolutionary dynamics of seed size and seedling competitive ability. Theor. Population Biol. 55, 324–343 (1999)

    Article  Google Scholar 

  19. Haccou, P., Iwasa, Y.: Optimal mixed strategies in stochastic environments. Theor. Pop. Biol. 47, 212–243 (1995)

    Article  Google Scholar 

  20. Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems. London Mathematical Society, Cambridge, 1977

  21. Evelyn Hutchinson, G.: An introduction to population ecology. Yale University Press, New Haven and London, 1978

  22. Kisdi, É., Meszéna, G.: Density dependent life history evolution in fluctuating environment. In: J. Yoshimura, C.W. Clark (eds.), Adaptation in Stochastic Environments, volume 98 of Lecture Notes in Biomathematics, Springer-Verlag, 1993, pp. 26–62

  23. Leibold, M.A.: The niche concept revisited: mechanistic models and community context. Ecology 76 (5), 1371–1382 (1995)

    Google Scholar 

  24. Levin, S.M.: Community equlibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104(939), 413–423 (1970)

    Article  Google Scholar 

  25. Levins, R.: Coexistence in a variable environment. Am. Nat. 114, 765–783 (1979)

    Article  Google Scholar 

  26. MacArthur, R., Levins, R.: Competition, habitat selection and character displacement in a patchy environment. Proc. Nat. Acad. Sci. 51, 1207–1210 (1964)

    Google Scholar 

  27. MacArthur, R., Levins, R.: The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101 (921), 377–385 (1967)

    Article  Google Scholar 

  28. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, 1973

  29. May, R.M.: On the theory of niche overlap. Theor. Pop. Biol. 5, 297–332 (1974)

    Article  Google Scholar 

  30. Maynard Smidth, J., Szathmáry, E.: The major transitions in evolution. W.H. Freeman Spektrum, Oxford, 1995

  31. McGehee, R., Armstrong, R.A.: Some mathematical problems concerning the ecological principle of competitive exclusion. J. Diff. Eqs. 23, 30–52 (1997)

    Google Scholar 

  32. Meszéna, G., Metz, J.A.J., Gyllenberg, M.: Limiting similarity: the general concept. In. prep.

  33. Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S.: Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: S.J. van Strien, S.M. Verduyn Lunel (eds.), Stochastic and spatial structures of dynamical systems, North Holland, 1996, pp. 183–231

  34. Noest, A.J.: Instability of the sexual continuum. Proc. Royal Soc. London B 264, 1389–1393 (1977)

    Article  Google Scholar 

  35. Roughgarden, J.A.: Theory of population genetics and evolutionary ecology: an introduction. Macmillan, New York, 1979

  36. Sasaki, A.: Clumped distribution by neighborhood competition. J. Theor. Biol. 186, 415–430 (1997)

    Article  Google Scholar 

  37. Sasaki, A., Ellner, S.: The evolutionarily stable phenotype distribution in a random environment. Evolution 49 (2), 337–350 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Gyllenberg.

Additional information

Mathamatics Subject Classification (2000): 92D40, 92D15

Acknowledgement We thank Odo Diekmann, Peter Abrams and an anonymous referee for careful reading of the manuscript and many valuable suggestions that led to a considerable improvement of the paper. We have also benefited from discussions with Stefan Geritz, Patsy Haccou, Hans Metz, Yoh Iwasa, and Akira Sasaki. This work was financially supported by the Academy of Finland and by the grants OTKA T033097, FKFP 0187/1999 and NWO-OTKA N34028.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyllenberg, M., Meszéna, G. On the impossibility of coexistence of infinitely many strategies. J. Math. Biol. 50, 133–160 (2005). https://doi.org/10.1007/s00285-004-0283-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0283-5

Keywords or phrases

Navigation