Skip to main content
Log in

A macroscopic approach to demography

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

A canonical/lognormal model for human demography is established, specifying the net maternity function and the age distribution for mothers of new-borns using a single macroscopic parameter vector of dimension five. The age distribution of mothers is canonical, while the net maternity function normalizes to a lognormal density. Comparison of an actual population with the model serves to identify anomalies in the population which may be indicative of phase transitions or influences from levels outside the demographic. Tracking the time development of the parameter vector may be used to predict the future state of a population, or to interpolate for data missing from the record. In accordance with classical theoretical considerations of Backman, Prigogine, et al., it emerges that the logarithm of a mother’s age is the most fundamental time variable for demographic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen, B., Shiner, J.S., Uhliger, D.E.: Allometric scaling and maximum efficiency in physiological eigen time. Proc. Nat. Acad. Sci. 99, 5822–5824 (2002)

    Article  Google Scholar 

  2. Athreya, K.B., Smith, J.D.H.: Canonical distributions and phase transitions. Discuss. Math. Prob. Stat. 20, 167–176 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Backman, G.: Lebensdauer und Entwicklung. Arch. für Entwicklungsmechanik 140, 90–123 (1940)

    Google Scholar 

  4. von Bertelanffy, L.: General System Theory. Braziller, New York, 1968

  5. Crow, E.L., Shimizu, K.: Lognormal Distributions. Marcel Dekker, New York, 1988

  6. Demetrius, L.: Growth rate, population entropy and perturbation theory. Math. Biosci. 93, 159–180 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demetrius, L.: Directionality principles in thermodynamics and evolution. Proc. Nat. Acad. Sci. 94, 3491–3498 (1997)

    Article  Google Scholar 

  8. Keyfitz, N.: Introduction to the Mathematics of Population. Addison-Wesley, Reading, MA, 1968

  9. Keyfitz, N.: Applied Mathematical Demography. 2nd ed., Springer, New York, 1985

  10. Keyfitz, N., Flieger, W.: World Population Growth and Aging. University of Chicago, Chicago, 1990

  11. Lotka, A.J.: Théorie Analytique des Associations Biologiques II: Analyse Démographique avec Application Particulière á l’Espèce Humaine. Hermann, Paris, 1939

  12. Mosimann, J.E. Campbell, G.: Applications in biology: simple growth models. In: ‘‘Lognormal Distributions’’ E.L. Crow and K. Shimizu, (eds.), Marcel Dekker, New York, 1988, pp. 287–302

  13. Prigogine, I.: Etude Thermodynamique des Phénomènes Irréversibles. Dunod, Paris, 1947

  14. Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 623–656 (1948)

    Google Scholar 

  15. Smith, J.D.H.: Competition and the canonical ensemble. Math. Biosci. 133, 69–83 (1996)

    Article  MATH  Google Scholar 

  16. Smith, J.D.H.: Demography and the canonical ensemble. Math. Biosci. 153, 151–161 (1998)

    Article  MATH  Google Scholar 

  17. Tuljapurkar, S.D.: Why use population entropy? It determines the rate of convergence. J. Math. Biol. 13, 325–337 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.D.H. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J. A macroscopic approach to demography. J. Math. Biol. 48, 105–118 (2004). https://doi.org/10.1007/s00285-003-0231-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0231-9

Keywords

Navigation