Skip to main content
Log in

Differential Modulation of Endophytic Microbiome of Ginger in the Presence of Beneficial Organisms, Pathogens and Both as Identified by DGGE Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endophytic microorganisms play a significant role in plants response to beneficial organisms and pathogens. In the current study, endophytic microorganisms from Zingiber officinale were screened for in vitro inhibition against Pythium myriotylum. From this, Burkholderia vietnamiensis ZoB74 was selected as an organism with remarkable antifungal effect. Further, the study focussed on analysis of in vivo changes in endophytic bacterial community of Z. officinale in presence of selected organisms and the pathogen P. myriotylum by PCR-DGGE. 16S rDNA sequencing of bacterial community after DGGE has resulted in the identification of a group of uncultured bacteria as the predominant microbial community of rhizome under various conditions of treatment. High frequency dominance of these endophytic bacteria suggests their role in disease resistance to soft rot in ginger. This also revealed the variation of endophytic microbiome of Z. officinale under biotic stress. Hence the study provides molecular insight into uncultured microbiome and its stress-inducible variation in ginger rhizome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M (2010) Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR–DGGE. World J Microbiol Biotechnol 26(3):555–560. https://doi.org/10.1007/s11274-009-0191-3

    Article  Google Scholar 

  2. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914

    Article  CAS  Google Scholar 

  3. Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330–339. https://doi.org/10.1016/j.mimet.2007.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chong TM, Yin WF, Mondy S, Grandclement C, Dessaux Y, Chan KG (2012) Heavy-metal resistance of a France vineyard soil bacterium, Pseudomonas mendocina strain S5.2, revealed by whole-genome sequencing. J Bacteriol 194(22):6366. https://doi.org/10.1128/JB.01702-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38(22):e200. https://doi.org/10.1093/nar/gkq873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417. https://doi.org/10.1007/s00248-011-9919-3

    Article  PubMed  Google Scholar 

  7. Denny TP (2006) Plant growth promoting rhizobacteria. In: Plant associated bacteria. Springer, Dordrecht

    Google Scholar 

  8. Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114(3):836–853. https://doi.org/10.1111/jam.12088

    Article  CAS  PubMed  Google Scholar 

  9. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41(4):369–383. https://doi.org/10.1007/s002480000096

    Article  CAS  PubMed  Google Scholar 

  10. Heinaru E, Truu J, Stottmeister U, Heinaru A (2000) Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol Ecol 31(3):195–205. https://doi.org/10.1111/j.1574-6941.2000.tb00684.x

    Article  CAS  PubMed  Google Scholar 

  11. Jasim B, Rohini S, Anisha C, Jimtha C, Radhakrishnan EK (2013) Antifungal and plant growth promoting properties of endophytic Pseudomonas aeruginosa from Zingiber officinale. J Pure Appl Microbiol 7(2):1–7

    Google Scholar 

  12. Jin H, Yang XY, Yan ZQ, Liu Q, Li XZ, Chen JX, Zhang DH, Zeng LM, Qin B (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37(5):376–385. https://doi.org/10.1016/j.syapm.2014.05.001

    Article  PubMed  Google Scholar 

  13. Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273(1–2):91–99. https://doi.org/10.1007/s11104-004-6894-1

    Article  CAS  Google Scholar 

  14. Lian J, Wang Z, Zhou S (2008) Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection. J Gen Appl Microbiol 54(2):83–92

    Article  CAS  Google Scholar 

  15. Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104(5):759–768. https://doi.org/10.1007/s10482-013-9984-3

    Article  PubMed  Google Scholar 

  16. Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2009) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46(2):169–174. https://doi.org/10.1007/s00374-009-0421-8

    Article  CAS  Google Scholar 

  17. Morales SE, Cosart TF, Johnson JV, Holben WE (2009) Extensive phylogenetic analysis of a soil bacterial community illustrates extreme taxon evenness and the effects of amplicon length, degree of coverage, and DNA fractionation on classification and ecological parameters. Appl Environ Microbiol 75(3):668–675. https://doi.org/10.1128/AEM.01757-08

    Article  CAS  PubMed  Google Scholar 

  18. de Melo Pereira GV et al (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microbiol Ecol 63:405–417. https://doi.org/10.1007/s00248-011-9919-3

    Article  Google Scholar 

  19. Pei C, Mi C, Sun L et al (2017) Diversity of endophytic bacteria of Dendrobium officinale based on culture-dependent and culture-independent methods. Biotechnol Biotechnol Equip. https://doi.org/10.1080/13102818.2016.1254067

    Article  Google Scholar 

  20. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110(16):6548–6553. https://doi.org/10.1073/pnas.1302837110

    Article  PubMed  Google Scholar 

  21. Peñuelas J, Rico L, Ogaya R, Jump AS, Terradas J (2012) Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol 14(4):565–575. https://doi.org/10.1111/j.1438-8677.2011.00532.x

    Article  PubMed  Google Scholar 

  22. Puerari C, Magalhães-guedes KT, Schwan RF (2015) Bacaba beverage produced by Umutina Brazilian Amerindians: microbiological and chemical characterization. Braz J Microbiol 1216:1207–1216

    Article  Google Scholar 

  23. Rohini S, Aswani R, Kannan M, Sylas VP, Radhakrishnan EK (2017) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol. https://doi.org/10.1007/s00284-017-1410-z

    Article  PubMed  Google Scholar 

  24. Sabu R, Radhakrishnan EK (2016) Bioprospecting of endophytic bacteria from Zingiber officinale with antibacterial activities. Int J Curr Microbiol Appl Sci 5(9):462–467. https://doi.org/10.20546/ijcmas.2016.509.050

    Article  Google Scholar 

  25. Sabu R, Soumya KR, Radhakrishnan EK (2017) Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7(2):115. https://doi.org/10.1007/s13205-017-0735-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trivedi P, Duan Y, Wang N (2010) Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Appl Environ Microbiol 76(11):3427–3436. https://doi.org/10.1128/AEM.02901-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Lu C, Min D, Wang Z, Ma X (2007) A mutation in the 5′ untranslated region of the BRCA1 gene in sporadic breast cancer causes downregulation of translation efficiency. J Int Med Res 35(4):564–573

    Article  CAS  Google Scholar 

  28. Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345(6270):63–65. https://doi.org/10.1038/345063a0

    Article  CAS  PubMed  Google Scholar 

  29. Xiong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW, Yang XL, Lu XN, Zhu YH (2013) Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol 58(2):123–129. https://doi.org/10.1111/lam.12163

    Article  CAS  PubMed  Google Scholar 

  30. Yang B, Wang Y, Qian P-Y (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform 17:135. https://doi.org/10.1186/s12859-016-0992-y

    Article  CAS  Google Scholar 

  31. Yu J, Zhou X-F, Yang S-J, Liu W-H, Hu X-F (2013) Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE. Appl Microbiol Biotechnol 97(22):9825–9836. https://doi.org/10.1007/s00253-013-5294-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Kerala State Council for Science, Technology and Environment for the KSCSTE—Fellowship (Council Order No. 010-40/FSHP/2010CSTE), and Kerala State Council for Science, Technology and Environment—Science Research Scheme (274/2015, KSCSTE Dated 6 July 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabu, R., Aswani, R., Prabhakaran, P. et al. Differential Modulation of Endophytic Microbiome of Ginger in the Presence of Beneficial Organisms, Pathogens and Both as Identified by DGGE Analysis. Curr Microbiol 75, 1033–1037 (2018). https://doi.org/10.1007/s00284-018-1485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1485-1

Navigation