Skip to main content

Advertisement

Log in

Characterization of Comamonas thiooxidans sp. nov., and Comparison of Thiosulfate Oxidation with Comamonas testosteroni and Comamonas composti

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Comamonas thiooxidans (strain S23T) capable of oxidizing thiosulfate under a mixotrophic growth condition was isolated from a sulfur spring. DNA–DNA homology study showed 55% similarity with Comamonas testosteroni KCTC2990T and 52% with Comamonas composti LMG24008T, the nearest phylogenetic relative (16S rRNA sequence similarity <97%). Comparative genomic fingerprinting by using ERIC and Rep-PCR further delineated species identity of the strain S23T for which Comamonas thiooxidans sp. nov. is proposed. In addition, thiosulfate oxidation potential of the strain S23T was compared with Comamonas testosteroni and Comamonas composti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berglund F, Sorbo BH (1960) Turbidimetric analysis of inorganic sulfate in serum, plasma and urine. J Clin Lab Invest 12:147–150

    Article  CAS  Google Scholar 

  2. Brimblecombe P, Hammer C, Rohde H, Ryaboshapko A, Boutron CF (1989) Human influence on the sulfur cycle. In: Brimblecombe P, Lein AY (eds) Evolution of the global biogeochemical sulfur cycle, vol 39. John Wiley & sons, New York, pp 77–121

    Google Scholar 

  3. Brinkhoff T, Kuever J, Muyzer G, Jannasch HW (2005) Genus Thiomicrospira Kuenen and Veldkamp 1972, 253AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology, part B. The gammaproteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 193–199

    Google Scholar 

  4. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987

    Article  CAS  PubMed  Google Scholar 

  5. Elshahed MS, Savage KN, Oren A, Gutierrez MC, Ventosa A, Krumholz LR (2004) Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 54:2275–2279

    Article  CAS  PubMed  Google Scholar 

  6. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  7. Ferrera I, Massana R, Casamayor EO, Balague V, Sanchez O, Pedros-Alio C, Mas J (2004) High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotechnol 64:726–734

    Article  CAS  PubMed  Google Scholar 

  8. Gleen H, Quastel JH (1952) Sulfur metabolism in soil. Appl Microbiol 1:70–77

    Google Scholar 

  9. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman JA, Kiene RP, Moran MA (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269

    Article  PubMed  Google Scholar 

  10. Kelly DP, Wood AP (2005) Genus Thiomonas Moreira and Amils 1997, 527VP. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology. Part C. The alpha, beta, delta and epsilon proteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 757–759

    Google Scholar 

  11. Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901

    Article  CAS  Google Scholar 

  12. Kelly DP, Wood AP, Stackebrandt E (2005) Genus Thiobacillus Beijerinck 1904b, 597AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology, Part C. The alpha, beta, delta and epsilon proteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 764–771

    Google Scholar 

  13. Kletzin A, Urich T, Muller F, Bandeiras TM, Gomes CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36:77–91

    Article  CAS  PubMed  Google Scholar 

  14. Kuykendall LD, Roy MD, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  15. Pandey SK, Narayan KD, Bandyopadhyay S, Nayak KC, Das SK (2009) Thiosulfate oxidation by Comamonas sp. S23 isolated from a sulphur spring. Curr Microbiol 58:516–521

    Article  CAS  PubMed  Google Scholar 

  16. Rainey FA, Kelly DP, Stackebrandt E, Burghardt J, Hiraishi A, Katayama Y, Wood AP (1999) A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651

    Article  PubMed  Google Scholar 

  17. Rivera IG, Chowdhury MAR, Huq A, Jacobs D, Martins MT, Colwell RR (1995) Enterobacterial repetitive intergenic consensus sequences and PCR to generate fingerprints of genomic DNAs from Vibrio cholera O1, O139 and non-1 strains. Appl Environ Microbiol 61:2898–2904

    CAS  PubMed  Google Scholar 

  18. Schmidt M, Siebert W (1973) In: Bailar JC, Emeleus HJ, Nyholm R, Trotman-Dickenson F (eds) Comprehensive inorganic chemistry, vol 2. Pergamon Press, Oxford, pp 795–934

    Google Scholar 

  19. Schook LB, Berk RS (1978) Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources. J Bacteriol 133:1377–1382

    CAS  Google Scholar 

  20. Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123

    Article  CAS  PubMed  Google Scholar 

  21. Sorokin DY, Tourova TP, Muyzer G (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28:679–687

    Article  CAS  PubMed  Google Scholar 

  22. Spring S, Kämpfer P, Schleifer KH (2001) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470

    CAS  PubMed  Google Scholar 

  23. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16 s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  24. Trudinger P (1967) Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. J Bacteriol 93:550–559

    CAS  PubMed  Google Scholar 

  25. Tuttle JH, Holmes PE, Jannasch HW (1974) Growth rate stimulation of marine pseudomonads by thiosulfate. Arch Microbiol 99:1–14

    Article  CAS  PubMed  Google Scholar 

  26. Tuttle JH, Schwartz JH, Whited GM (1983) Some properties of thiosulfate-oxidizing enzyme from marine heterotroph 16B. Appl Environ Microbiol 46:438–445

    CAS  PubMed  Google Scholar 

  27. Unz RF, Head IM (2005) Genus Thiothrix Winogradsky 1888, 39AL. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology, Part B. The gammaproteobacteria, vol 2, 2nd edn. Springer Science, New York, pp 131–142

    Google Scholar 

  28. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprint of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  Google Scholar 

  29. Vitolins MI, Swaby RJ (1969) Activity of sulfur oxidizing microorganisms in some Australian soils. Austr J Soil Res 7:171–183

    Article  CAS  Google Scholar 

  30. Wayne LG, Good RC, Krichevsky MI, Blacklock Z, David HL, Dawson D, Gross W, Hawkins J, Levy-Frebault VV, McManus C et al (1991) Fourth report of the cooperative, open-ended study of slowly growing mycobacteria by the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 41:463–472

    Article  CAS  PubMed  Google Scholar 

  31. Young CC, Chou JH, Arun AB, Yen WS, Sheu SY, Shen FT, Lai WA, Rekha PD, Chen WM (2008) Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 58:251–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. P. Schumann, DSMZ of Germany, for his help in determining the G + C content composition of the organism. We are also thankful to Korean Collection for Type Cultures (KCTC), Daejeon, Republic of Korea, and BCCMTM/LMG Bacteria collection, Universiteit Gent, Belgium for providing us the type strains C. testosteroni KCTC2990T and Comamonas composti LMG24008T used in this study. This study was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, K.D., Pandey, S.K. & Das, S.K. Characterization of Comamonas thiooxidans sp. nov., and Comparison of Thiosulfate Oxidation with Comamonas testosteroni and Comamonas composti . Curr Microbiol 61, 248–253 (2010). https://doi.org/10.1007/s00284-010-9602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9602-9

Keywords

Navigation