Skip to main content

Advertisement

Log in

Evaluating the immunoproteasome as a potential therapeutic target in cisplatin-resistant small cell and non-small cell lung cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the expression of proteasome subunits to assess whether the proteasome could be a therapeutic target in cisplatin-resistant lung cancer cells.

Methods

Cisplatin-resistant (CR) variants were established from three non-small cell lung cancer (NSCLC) cell lines (A549, H1299, and H1975) and two small cell lung cancer (SCLC) cell lines (SBC3 and SBC5). The expression of proteasome subunits, the sensitivity to immunoproteasome inhibitors, and 20S proteasomal proteolytic activity were examined in the CR variants of the lung cancer cell lines.

Results

All five CR cell lines highly expressed one or both of the immunoproteasome subunit genes, PSMB8 and PSMB9, while no clear trend was observed in the expression of constitutive proteasome subunits. The CR cells expressed significantly higher levels of PSMB8 and PSMB9 proteins, as well. The CR variants of the H1299 and SBC3 cell lines were more sensitive to immunoproteasome inhibitors, and had significantly more proteasomal proteolytic activity than their parental counterparts.

Conclusions

The immunoproteasome may be an effective therapeutic target in a subset of CR lung cancers. Proteasomal proteolytic activity may be a predictive marker for the efficacy of immunoproteasome inhibitors in cisplatin-resistant SCLC and NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  3. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359(13):1367–1380. https://doi.org/10.1056/NEJMra0802714

    Article  CAS  PubMed  Google Scholar 

  4. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu Y-L, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311. https://doi.org/10.1016/s0140-6736(16)30958-8

    Article  CAS  PubMed  Google Scholar 

  5. Tay RY, Heigener D, Reck M, Califano R (2019) Immune checkpoint blockade in small cell lung cancer. Lung Cancer 137:31–37. https://doi.org/10.1016/j.lungcan.2019.08.024

    Article  PubMed  Google Scholar 

  6. Amable L (2016) Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 106:27–36. https://doi.org/10.1016/j.phrs.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  7. Basu A, Krishnamurthy S (2010) Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids. https://doi.org/10.4061/2010/201367

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brozovic A, Ambriović-Ristov A, Osmak M (2010) The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 40(4):347–359. https://doi.org/10.3109/10408441003601836

    Article  CAS  PubMed  Google Scholar 

  9. Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278(11):9100–9106. https://doi.org/10.1074/jbc.M210284200

    Article  CAS  PubMed  Google Scholar 

  10. Cocetta V, Ragazzi E, Montopoli M (2019) Mitochondrial involvement in cisplatin resistance. Int J Mol Sci. https://doi.org/10.3390/ijms20143384

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wangpaichitr M, Sullivan EJ, Theodoropoulos G, Wu C, You M, Feun LG, Lampidis TJ, Kuo MT, Savaraj N (2012) The relationship of thioredoxin-1 and cisplatin resistance: its impact on ROS and oxidative metabolism in lung cancer cells. Mol Cancer Ther 11(3):604–615. https://doi.org/10.1158/1535-7163.MCT-11-0599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Yu H, Qin H, Kang J, Yu C, Zhong J, Su J, Li H, Sun L (2012) Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett 314(2):232–243. https://doi.org/10.1016/j.canlet.2011.09.034

    Article  CAS  PubMed  Google Scholar 

  13. Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N, Tesniere A, Zitvogel L, Kroemer G (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30(10):1147–1158. https://doi.org/10.1038/onc.2010.500

    Article  CAS  PubMed  Google Scholar 

  14. Xu Y, Wang C, Li Z (2014) A new strategy of promoting cisplatin chemotherapeutic efficiency by targeting endoplasmic reticulum stress. Mol Clin Oncol 2(1):3–7. https://doi.org/10.3892/mco.2013.202

    Article  CAS  PubMed  Google Scholar 

  15. Murata S, Takahama Y, Kasahara M, Tanaka K (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 19(9):923–931. https://doi.org/10.1038/s41590-018-0186-z

    Article  CAS  PubMed  Google Scholar 

  16. Nikesitch N, Lee JM, Ling S, Roberts TL (2018) Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin Transl Immunol 7(1):e1007. https://doi.org/10.1002/cti2.1007

    Article  Google Scholar 

  17. Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A (1994) Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem 115(2):257–269. https://doi.org/10.1093/oxfordjournals.jbchem.a124327

    Article  CAS  PubMed  Google Scholar 

  18. Hallermalm K, Seki K, Wei C, Castelli C, Rivoltini L, Kiessling R, Levitskaya J (2001) Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood 98(4):1108–1115

    Article  CAS  PubMed  Google Scholar 

  19. Thomas S, Kotamraju S, Zielonka J, Harder DR, Kalyanaraman B (2007) Hydrogen peroxide induces nitric oxide and proteosome activity in endothelial cells: a bell-shaped signaling response. Free Radic Biol Med 42(7):1049–1061. https://doi.org/10.1016/j.freeradbiomed.2007.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJ (2010) The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 432(3):585–594. https://doi.org/10.1042/BJ20100878

    Article  CAS  PubMed  Google Scholar 

  21. Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 10(1):73–78. https://doi.org/10.1038/nri2687

    Article  CAS  PubMed  Google Scholar 

  22. Nathan JA, Spinnenhirn V, Schmidtke G, Basler M, Groettrup M, Goldberg AL (2013) Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 152(5):1184–1194. https://doi.org/10.1016/j.cell.2013.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG (2017) The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev 36(4):561–584. https://doi.org/10.1007/s10555-017-9707-8

    Article  CAS  PubMed  Google Scholar 

  24. Roeten MSF, Cloos J, Jansen G (2018) Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 81(2):227–243. https://doi.org/10.1007/s00280-017-3489-0

    Article  CAS  PubMed  Google Scholar 

  25. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Bladé J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC, Assessment of Proteasome Inhibition for Extending Remission (APEX) Investigators (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498. https://doi.org/10.1056/NEJMoa043445

    Article  CAS  PubMed  Google Scholar 

  26. Dimopoulos MA, Goldschmidt H, Niesvizky R, Joshua D, Chng W-J, Oriol A, Orlowski RZ, Ludwig H, Facon T, Hajek R, Weisel K, Hungria V, Minuk L, Feng S, Zahlten-Kumeli A, Kimball AS, Moreau P (2017) Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol 18(10):1327–1337. https://doi.org/10.1016/s1470-2045(17)30578-8

    Article  CAS  PubMed  Google Scholar 

  27. Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, Sandhu I, Ganly P, Baker BW, Jackson SR, Stoppa AM, Simpson DR, Gimsing P, Palumbo A, Garderet L, Cavo M, Kumar S, Touzeau C, Buadi FK, Laubach JP, Berg DT, Lin J, Di Bacco A, Hui AM, van de Velde H, Richardson PG, Group T-MS (2016) Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 374(17):1621–1634. https://doi.org/10.1056/NEJMoa1516282

    Article  CAS  PubMed  Google Scholar 

  28. Drilon A, Schoenfeld AJ, Arbour KC, Litvak A, Ni A, Montecalvo J, Yu HA, Panora E, Ahn L, Kennedy M, Haughney-Siller A, Miller V, Ginsberg M, Ladanyi M, Arcila M, Rekhtman N, Kris MG, Riely GJ (2019) Exceptional responders with invasive mucinous adenocarcinomas: a phase 2 trial of bortezomib in patients with KRAS G12D-mutant lung cancers. Cold Spring Harb Mol Case Stud. https://doi.org/10.1101/mcs.a003665

    Article  PubMed  PubMed Central  Google Scholar 

  29. Papadopoulos KP, Burris HA III, Gordon M, Lee P, Sausville EA, Rosen PJ, Patnaik A, Cutler RE Jr, Wang Z, Lee S, Jones SF, Infante JR (2013) A phase I/II study of carfilzomib 2–10-min infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol 72(4):861–868. https://doi.org/10.1007/s00280-013-2267-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lara PN Jr, Chansky K, Davies AM, Franklin WA, Gumerlock PH, Gualianone PP, Atkins JN, Farneth N, Mack PC, Crowley JJ, Gandara DR (2006) Bortezomib (PS-341) in relapsed or refractory extensive stage small cell lung cancer: a Southwest Oncology Group phase II trial (S0327). J Thorac Oncol 1(9):996–1001

    Article  PubMed  Google Scholar 

  31. Arnold SM, Chansky K, Leggas M, Thompson MA, Villano JL, Hamm J, Sanborn RE, Weiss GJ, Chatta G, Baggstrom MQ (2017) Phase 1b trial of proteasome inhibitor carfilzomib with irinotecan in lung cancer and other irinotecan-sensitive malignancies that have progressed on prior therapy (Onyx IST reference number: CAR-IST-553). Investig New Drugs 35(5):608–615. https://doi.org/10.1007/s10637-017-0441-4

    Article  CAS  Google Scholar 

  32. Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243(1–2):167–190. https://doi.org/10.1016/s0022-1759(00)00233-7

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki M, Yamamori T, Yasui H, Inanami O (2016) Effect of MPS1 inhibition on genotoxic stress responses in murine tumour cells. Anticancer Res 36(6):2783–2792

    CAS  PubMed  Google Scholar 

  34. Suzuki M, Yamamori T, Bo T, Sakai Y, Inanami O (2017) MK-8776, a novel Chk1 inhibitor, exhibits an improved radiosensitizing effect compared to UCN-01 by exacerbating radiation-induced aberrant mitosis. Transl Oncol 10(4):491–500. https://doi.org/10.1016/j.tranon.2017.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Takashima Y, Kikuchi E, Kikuchi J, Suzuki M, Kikuchi H, Maeda M, Shoji T, Furuta M, Kinoshita I, Dosaka-Akita H, Sakakibara-Konishi J, Konno S (2019) Bromodomain and extraterminal domain inhibition synergizes with WEE1-inhibitor AZD1775 effect by impairing nonhomologous end joining and enhancing DNA damage in nonsmall cell lung cancer. Int J Cancer. https://doi.org/10.1002/ijc.32515

    Article  PubMed  Google Scholar 

  36. Rouette A, Trofimov A, Haberl D, Boucher G, Lavallee VP, D'Angelo G, Hebert J, Sauvageau G, Lemieux S, Perreault C (2016) Expression of immunoproteasome genes is regulated by cell-intrinsic and -extrinsic factors in human cancers. Sci Rep 6:34019. https://doi.org/10.1038/srep34019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niewerth D, Franke NE, Jansen G, Assaraf YG, van Meerloo J, Kirk CJ, Degenhardt J, Anderl J, Schimmer AD, Zweegman S, de Haas V, Horton TM, Kaspers GJ, Cloos J (2013) Higher ratio immune versus constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica 98(12):1896–1904. https://doi.org/10.3324/haematol.2013.092411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niewerth D, Kaspers GJ, Jansen G, van Meerloo J, Zweegman S, Jenkins G, Whitlock JA, Hunger SP, Lu X, Alonzo TA, van de Ven PM, Horton TM, Cloos J (2016) Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. J Hematol Oncol 9(1):82. https://doi.org/10.1186/s13045-016-0312-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niewerth D, Kaspers GJ, Jansen G, van Meerloo J, Zweegman S, Jenkins G, Whitlock JA, Hunger SP, Lu X, Alonzo TA, van de Ven PM, Horton TM, Cloos J (2014) Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. J Hematol Oncol. https://doi.org/10.1186/1756-8722-7-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Busse A, Kraus M, Na IK, Rietz A, Scheibenbogen C, Driessen C, Blau IW, Thiel E, Keilholz U (2008) Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer 112(3):659–670. https://doi.org/10.1002/cncr.23224

    Article  CAS  PubMed  Google Scholar 

  41. Ji CH, Kwon YT (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol Cells 40(7):441–449. https://doi.org/10.14348/molcells.2017.0115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428(9):1714–1724. https://doi.org/10.1016/j.jmb.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ling YH, Liebes L, Jiang JD, Holland JF, Elliott PJ, Adams J, Muggia FM, Perez-Soler R (2003) Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 9(3):1145–1154

    CAS  PubMed  Google Scholar 

  44. Zang L, Boufraqech M, Lake R, Kebebew E (2016) Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer. Oncotarget 7(13):16517–16528. https://doi.org/10.18632/oncotarget.7760

    Article  Google Scholar 

  45. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512. https://doi.org/10.1101/gad.13.12.1501

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiki Kikuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2020_4061_MOESM1_ESM.tif

Supplementary Figure S1. Quantitative reverse transcription PCR analysis showing mRNA levels of 20S proteasome subunits in cisplatin-resistant variants from A549, H1299, H1975, SBC3, and SBC5 cells. (TIF 550 kb)

280_2020_4061_MOESM2_ESM.tif

Supplementary Figure S2. The effect of the immunoproteasome inhibitor PR957 on cisplatin-resistant (CR) variants derived from (a) A549, (b) H1299, (c) H1975, (d) SBC3, and (e) SBC5 lung cancer cell lines by MTT assay. (TIF 462 kb)

280_2020_4061_MOESM3_ESM.tif

Supplementary Figure S3. (a) Western blot analysis showing the accumulation of ubiquitinated proteins after carfilzomib (CFZ) treatment. (b) Quantification of western blot analysis shown in (a) and normalized to actin. (TIF 803 kb)

280_2020_4061_MOESM4_ESM.tif

Supplementary Figure S4. Simultaneous knockdown of PSMB5, PSMB8, and PSMB9 by small interfering RNA (siRNA) in the cisplatin-resistant variants of A549 and H1299. (a) Knockdown efficiency of PSMB5, PSMB8, and PSMB9 was confirmed by western blot analysis. Simultaneous knockdown of PSMB5, PSMB8, and PSMB9 suppressed 20S proteasome chymotrypsin-like activity (b) but did not impair cell viability (c). The effects of the triple knockdown on the sensitivity to cisplatin (d) and carfilzomib (CFZ) (e) were analyzed by MTT cell proliferation assay. NT, non-target. **P<0.01, Welch t test. (TIF 831 kb)

280_2020_4061_MOESM5_ESM.tif

Supplementary Figure S5. Combination of antioxidant agent and carfilzomib (CFZ) in the cisplatin-resistant (CR) variants of A549 and H1299. (a) 1000 mmol/L of glutathione (GSH) or 100 mmol/L of N-acetylcysteine (NAC) reduced intracellular reactive oxygen species levels. The effect of antioxidant agent on the sensitivity of CFZ was analyzed by MTT cell proliferation assay in the CR variants of A549 (b) and H1299 (c). **P<0.01, ***P<0.001, Welch t test. (TIF 481 kb)

280_2020_4061_MOESM6_ESM.tif

Supplementary Figure S6. Western blot analysis showing the expression of proteins involved in controlling G2/M cell cycle progression in the indicated cells after carfilzomib (CFZ) treatment. (TIF 1062 kb)

280_2020_4061_MOESM7_ESM.tif

Supplementary Figure S7. Western blot analysis showing the expression of proteins involved in endoplasmic reticulum stress in the indicated cells after carfilzomib (CFZ) treatment. (TIF 924 kb)

Supplementary file8 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoji, T., Kikuchi, E., Kikuchi, J. et al. Evaluating the immunoproteasome as a potential therapeutic target in cisplatin-resistant small cell and non-small cell lung cancer. Cancer Chemother Pharmacol 85, 843–853 (2020). https://doi.org/10.1007/s00280-020-04061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04061-9

Keywords

Navigation