Skip to main content

Advertisement

Log in

Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

It has been supposed that cardiac toxicity of doxorubicin is due to its production of free radicals and inflammatory cytokines. Dapsone, an antibiotic drug which is the principal in a multidrug regimen for the treatment of leprosy, is a sulfone with anti-inflammatory and antioxidant immunosuppressive properties. Therefore, we designed this study to investigate the possible effects of dapsone on doxorubicin-induced cardiotoxicity.

Methods

Male rats were administrated doxorubicin (2.5 mg/kg) and dapsone (1, 3, 10 mg/kg) intraperitoneally six times in 2 weeks. Then electrocardiographic (ECG) parameters (QRS complexes, RR and QT intervals) alternation, papillary muscle contraction and excitation, and histopathological changes were assessed. Also, the heart tissue levels of malondialdehyde (MDA) as oxidant factor and superoxide dismutase (SOD) as antioxidant enzyme, tumor necrosis factor-alpha (TNF-α) and serum level of CK-MB were analyzed.

Results

Administration of dapsone with doxorubicin significantly reversed alterations induced by doxorubicin in serum levels of CK-MB, ECG parameters, papillary muscle contractility and excitation. Furthermore, the measurement of MDA, SOD and TNF-α tissue level indicated that dapsone significantly reduced oxidative stress and inflammation. These findings were consistent with histopathological analysis.

Conclusion

Dapsone exerts cardioprotective effects on doxorubicin-induced cardiotoxicity through its anti-inflammatory and antioxidant mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wonders KY, Hydock DS, Schneider CM, Hayward R (2008) Acute exercise protects against doxorubicin cardiotoxicity. Integr Cancer Ther 7(3):147–154

    CAS  PubMed  Google Scholar 

  2. Gandhi H, Patel VB, Mistry N, Patni N, Nandania J, Balaraman R (2013) Doxorubicin mediated cardiotoxicity in rats: protective role of felodipine on cardiac indices. Environ Toxicol Pharmacol 36(3):787–795

    CAS  PubMed  Google Scholar 

  3. Guo R, Hua Y, Ren J, Bornfeldt KE, Nair S (2018) Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis 9(6):692

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim SH, Kim K-J, Kim J-H, Kwak J-H, Song H, Cho JY, Hwang DY, Kim KS, Jung Y-S (2017) Comparision of doxorubicin-induced cardiotoxicity in the ICR mice of different sources. Lab Anim Res 33(2):165–170

    PubMed  PubMed Central  Google Scholar 

  5. Khalilzadeh M, Abdollahi A, Abdolahi F, Abdolghaffari AH, Dehpour AR, Jazaeri F (2018) Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sci 207:436–441

    CAS  PubMed  Google Scholar 

  6. Pecoraro M, Ciccarelli M, Fiordelisi A, Iaccarino G, Pinto A, Popolo A (2018) Diazoxide improves mitochondrial connexin 43 expression in a mouse model of doxorubicin-induced cardiotoxicity. Int J Mol Sci 19(3):757

    PubMed Central  Google Scholar 

  7. Angsutararux P, Luanpitpong S, Issaragrisil S (2015) Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxid Med Cell Longev. https://doi.org/10.1155/2015/795602

    Article  PubMed  PubMed Central  Google Scholar 

  8. dos Santos JM, Alfredo TM, Antunes KÁ, da Cunha JDSM, Costa EMA, Lima ES, Silva DB, Carollo CA, Schmitz WO, Boleti APDA (2018) Guazuma ulmifolia Lam. Decreases Oxidative Stress in Blood Cells and Prevents Doxorubicin-Induced Cardiotoxicity. Oxid Med Cell Longev. DOI: 10.1155/2018/2935051.

    Google Scholar 

  9. Pecoraro M, Del Pizzo M, Marzocco S, Sorrentino R, Ciccarelli M, Iaccarino G, Pinto A, Popolo A (2016) Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 293:44–52

    CAS  PubMed  Google Scholar 

  10. Wozel G, Blasum C (2014) Dapsone in dermatology and beyond. Arch Dermatol Res 306(2):103–124

    CAS  PubMed  Google Scholar 

  11. Kwon M-J, Joo H-G (2018) Dapsone modulates lipopolysaccharide-activated bone marrow cells by inducing cell death and down-regulating tumor necrosis factor-α production. J Vet Sci 19(6):744–749

    PubMed  PubMed Central  Google Scholar 

  12. Ríos C, Farfán-Briseño AC, Manjarrez-Marmolejo J, Franco-Pérez J, Méndez-Armenta M, Nava-Ruiz C, Caballero-Chacón S, Ruiz-Diaz A, Baron-Flores V, Díaz-Ruiz A (2019) Efficacy of dapsone administered alone or in combination with diazepam to inhibit status epilepticus in rats. Brain Res 1708:181–187

    PubMed  Google Scholar 

  13. Ríos C, Orozco-Suarez S, Salgado-Ceballos H, Mendez-Armenta M, Nava-Ruiz C, Santander I, Barón-Flores V, Caram-Salas N, Diaz-Ruiz A (2015) Anti-apoptotic effects of dapsone after spinal cord injury in rats. Neurochem Res 40(6):1243–1251

    PubMed  Google Scholar 

  14. Zhan R, Zhao M, Zhou T, Chen Y, Yu W, Zhao L, Zhang T, Wang H, Yang H, Jin Y (2018) Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation. Cell Death Dis 9(6):683

    PubMed  PubMed Central  Google Scholar 

  15. Sumitra M, Manikandan P, Rao KVK, Nayeem M, Manohar BM, Puvanakrishnan R (2004) Cardiorespiratory effects of diazepam–ketamine, xylazine–ketamine and thiopentone anesthesia in male Wistar rats-a comparative analysis. Life Sci 75(15):1887–1896

    CAS  PubMed  Google Scholar 

  16. Arini PD, Liberczuk S, Mendieta JG, Santa María M, Bertrán GC (2018) Electrocardiogram delineation in a Wistar rat experimental model. Comput Math Methods Med. https://doi.org/10.1155/2018/2185378

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yarmohmmadi F, Rahimi N, Faghir-Ghanesefat H, Javadian N, Abdollahi A, Pasalar P, Jazayeri F, Ejtemaeemehr S, Dehpour AR (2017) Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. Eur J Pharmacol 796:39–44

    CAS  PubMed  Google Scholar 

  18. Kelishomi RB, Ejtemaeemehr S, Tavangar SM, Rahimian R, Mobarakeh JI, Dehpour AR (2008) Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology 243(1–2):96–104

    CAS  PubMed  Google Scholar 

  19. Muthuraman A, Singh N, Jaggi AS (2011) Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: an evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol 49(10):2557–2563

    CAS  PubMed  Google Scholar 

  20. Piegari E, Russo R, Cappetta D, Esposito G, Urbanek K, Dell'Aversana C, Altucci L, Berrino L, Rossi F, De Angelis A (2016) MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget 7(38):62312

    PubMed  PubMed Central  Google Scholar 

  21. Volkova M, Russell R (2011) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7(4):214–220

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Giampieri F, Alvarez-Suarez JM, Gasparrini M, Forbes-Hernandez TY, Afrin S, Bompadre S, Rubini C, Zizzi A, Astolfi P, Santos-Buelga C (2016) Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress. Food Chem Toxicol 94:128–137

    CAS  PubMed  Google Scholar 

  23. Tahover E, Patil YP, Gabizon AA (2015) Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs 26(3):241–258

    CAS  PubMed  Google Scholar 

  24. Subbarao R, Ok S-H, Lee S, Kang D, Kim E-J, Kim J-Y, Sohn J-T (2018) Lipid emulsion inhibits the late apoptosis/cardiotoxicity induced by doxorubicin in rat cardiomyoblasts. Cells 7(10):144

    CAS  PubMed Central  Google Scholar 

  25. Rašković A, Stilinović N, Kolarović J, Vasović V, Vukmirović S, Mikov M (2011) The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules 16(10):8601–8613

    PubMed  PubMed Central  Google Scholar 

  26. Zhang T, Tian X, Wang Q, Tong Y, Wang H, Li Z, Li L, Zhou T, Zhan R, Zhao L (2015) Surgical stress induced depressive and anxiety like behavior are improved by dapsone via modulating NADPH oxidase level. Neurosci Lett 585:103–108

    CAS  PubMed  Google Scholar 

  27. Cho SC, Park MC, Keam B, Choi JM, Cho Y, Hyun S, Park SC, Lee J (2010) DDS, 4, 4′-diaminodiphenylsulfone, extends organismic lifespan. Proc Natl Acad Sci 107(45):19326–19331

    CAS  PubMed  Google Scholar 

  28. Suda T, Suzuki Y, Matsui T, Inoue T, Niide O, Yoshimaru T, Suzuki H, Ra C, Ochiai T (2005) Dapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent manner. Br J Dermatol 152(5):887–895

    CAS  PubMed  Google Scholar 

  29. Horacek J, Jakl M, Horackova J, Pudil R, Jebavy L, Maly J (2009) Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol 31(2):115–117

    CAS  PubMed  Google Scholar 

  30. Antoniou C-K, Dilaveris P, Manolakou P, Galanakos S, Magkas N, Gatzoulis K, Tousoulis D (2017) QT prolongation and malignant arrhythmia: how serious a problem? Eur Cardiol Rev 12(2):112

    Google Scholar 

  31. Sordillo PP, Sordillo DC, Helson L (2015) The prolonged QT Interval: role of pro-inflammatory cytokines, reactive oxygen species and the ceramide and sphingosine-1 phosphate pathways. vivo 29(6):619–636

    CAS  Google Scholar 

  32. Adlan AM (2018) Inflammation and heart rate-corrected QT interval: evidence for a potentially reversible cause of sudden death in patients with rheumatoid arthritis? J Rheumatol. https://doi.org/10.3899/jrheum.180921

    Article  PubMed  Google Scholar 

  33. Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H (2017) Role of connexin 43 in different forms of intercellular communication–gap junctions, extracellular vesicles and tunnelling nanotubes. J cell Sci 130(21):3619–3630

    CAS  PubMed  Google Scholar 

  34. Pecoraro M, Sorrentino R, Franceschelli S, Del Pizzo M, Pinto A, Popolo A (2015) Doxorubicin-mediated cardiotoxicity: role of mitochondrial connexin 43. Cardiovasc Toxicol 15(4):366–376

    CAS  PubMed  Google Scholar 

  35. Pecoraro M, Rodríguez-Sinovas A, Marzocco S, Ciccarelli M, Iaccarino G, Pinto A, Popolo A (2017) Cardiotoxic effects of short-term doxorubicin administration: involvement of connexin 43 in calcium impairment. Int J Mol Sci 18(10):2121

    PubMed Central  Google Scholar 

  36. Oliveira MS, Melo MB, Carvalho JL, Melo IM, Lavor MS, Gomes DA, de Goes AM, Melo MM (2013) Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Therapy 5(2):052

    CAS  Google Scholar 

  37. Galal A, El Bakly WM, Al Haleem ENA, El-Demerdash E (2016) Selective A 3 adenosine receptor agonist protects against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol 77(2):309–322

    CAS  PubMed  Google Scholar 

  38. Akolkar G, Bagchi AK, Ayyappan P, Jassal DS, Singal PK (2017) Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. Am J Physiol Cell Physiol 312(4):C418–C427

    PubMed  Google Scholar 

  39. Akolkar G, da Silva DD, Ayyappan P, Bagchi AK, Jassal DS, Salemi VMC, Irigoyen MC, De Angelis K, Singal PK (2017) Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 313(4):H795–H809

    CAS  PubMed  Google Scholar 

  40. El-Aziz TAA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2012) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12(4):233–240

    Google Scholar 

  41. Mantawy EM, Bakly WM, Esmat A, Badr AM, Demerdash E (2014) Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 728:107–118

    CAS  PubMed  Google Scholar 

  42. Kanoh S, Tanabe T, Rubin BK (2011) Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest 140(4):980–990

    CAS  PubMed  Google Scholar 

  43. Ryu S, Han HM, Song PI, Armstrong CA, Park Y (2015) Suppression of Propionibacterium acnes infection and the associated inflammatory response by the antimicrobial peptide P5 in mice. PLoS ONE ONE 10(7):e0132619

    Google Scholar 

  44. Abe M, Shimizu A, Yokoyama Y, Takeuchi Y, Ishikawa O (2008) A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-α production from activated mononuclear cells on cutaneous lupus erythematosus. Clin Exp Dermatol Exp Dermatol 33(6):759–763

    CAS  Google Scholar 

  45. Zhou T, Zhao L, Zhan R, He Q, Tong Y, Tian X, Wang H, Zhang T, Fu Y, Sun Y (2014) Blood–brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone. Biochem Biophys Res Commun 453(3):419–424

    CAS  PubMed  Google Scholar 

  46. Diaz-Ruiz A, Zavala C, Montes S, Ortiz-Plata A, Salgado-Ceballos H, Orozco-Suarez S, Nava-Ruiz C, Neri I, Severiano F, Ríos C (2008) Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats. J Neurosci Res 86(15):3410–3419

    CAS  PubMed  Google Scholar 

  47. Venditti P, Balestrieri M, De Leo T, Di Meo S (1998) Free radical involvement in doxorubicin-induced electrophysiological alterations in rat papillary muscle fibres. Cardiovasc Res 38(3):695–702

    CAS  PubMed  Google Scholar 

  48. Liu G, Liu Y, Wang R, Hou T, Chen C, Zheng S, Dong Z (2016) Spironolactone attenuates doxorubicin-induced cardiotoxicity in rats. Cardiovasc Ther 34(4):216–224

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply appreciate Gilaranco Co. for preparing dapsone powder for our experimental investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The Ethical Committee of Tehran University of Medical Sciences approved all the in vivo work (IR.TUMS.MEDICINE.REC.1398.364) and they were in accordance with the National Institute of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (HHS publication 85–23, 1985), legislation for the protection of animals used for scientific purposes (Directive 2010/63/EU).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheibani, M., Nezamoleslami, S., Faghir-Ghanesefat, H. et al. Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 85, 563–571 (2020). https://doi.org/10.1007/s00280-019-04019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-04019-6

Keywords

Navigation