Skip to main content
Log in

Sex ratio in lesser black-backed gull in relation to environmental pollutants

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

In birds, there is ample evidence that the mother can manipulate the sex of the young and produce more of the sex, which gives the highest fitness return. This has previously been documented in gulls, Laridae. Gulls are sexually size dimorphic with males larger than females, and there is good evidence that parents in poor body condition switch their investment to the smallest sex. In the present study, we examined the primary sex ratio and the survival of male and female chicks of lesser black-backed gull (Larus fuscus fuscus) in relation to their blood levels of organochlorines (OCs), perfluorinated compounds (PFCs) and polybrominated diphenyl ethers (BDE-47). We show that females with high levels of OCs (but not PFCs and BDE-47) are likely to skew their sex ratio at hatching towards female offspring. Few females had very high levels of OCs, and the many females with low levels of OCs overproduced sons resulting in a male skew at hatching (59%). The survival of female offspring was lower than the survival of male offspring, causing an even stronger male skew in sex ratio (71%). There is evidence to conclude that circulating levels of OCs in the blood of females may have detrimental effect on the sex allocation strategy and could be of serious threat to the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso-Alvarez C (2006) Manipulation of primary sex ratio: an updated review. Avian Poult Biol Rev 17:1–20

    Article  Google Scholar 

  • Badyaev AV, Schwabl HR, Young RL, Duckworth RA, Navara KJ, Parlow AF (2005) Adaptive sex differences in growth of pre-ovulation oocytes in a passerine bird. Proc Roy Soc B 272:2165–2172

    Article  Google Scholar 

  • Barron M, Gailbraith GH, Beltman D (1995) Comparative reproductive and developmental toxicology of PCB in birds. Comp Biochem Physiol 112:1–14

    Google Scholar 

  • Bergeron JM, Crews D, McLachlan A (1994) PCBs as environmental Estrogens: turtle sex determination as a biomarker of environmental contamination. Environ Health Perspect 102:780–781

    Article  PubMed  CAS  Google Scholar 

  • Bergeron JM, Willingham C, Osborn CT, Rhen T, Crews D (1999) Developmental synergism of steroidal estrogens in sex determination. Environ Health Perspect 107:93–97

    Article  PubMed  CAS  Google Scholar 

  • Bignert A, Olsson M, Person W, Jensen S, Zakrisson S, Litzèn K, Eriksson U, Haggberg L, Alsberg T (1998) Temporal trends of organochlorines in northern Europe, 1967–1995. Relation to global fractionation, leakage from sediments and international measures. Environ Pollut 99:177–198

    Article  PubMed  CAS  Google Scholar 

  • Brunström B, Axelsson J, Haldin K (2003) Effects of endocrine modulators on sex differentiation in birds. Ecotoxicology 12:287–295

    Article  PubMed  Google Scholar 

  • Bustnes JO, Folstad I, Erikstad KE, Fjeld M, Miland ØO, Utne-Skaare J (2002) Blood concentration of organochlorines and wing feather asymmetry in glacous gulls. Funct Ecol 16:617–622

    Article  Google Scholar 

  • Bustnes JO, Erikstad KE, Utne-Skaare J, Bakken V, Mehlum F (2003a) Ecological effects of organ chlorine pollutants in the arctic: a study of the glaucous gull. Ecol Appl 13:504–515

    Article  Google Scholar 

  • Bustnes JO, Bakken V, Utne-Skaare J, Erikstad KE (2003b) Age and accumulation of persistent organochloines: a study of arctic-breeding glaucous gulls (Larus hyperboreus). Environ Toxicol Chem 22:2173–2179

    Article  PubMed  CAS  Google Scholar 

  • Bustnes JO, Hanssen SA, Folstad I, Erikstad KE, Hasselquist D, Utne-Skaare J (2004) Immune function and organochlorine pollutants in arctic breeding glaucous gulls. Arch Environ Contam Toxicol 47:530–541

    Article  PubMed  CAS  Google Scholar 

  • Bustnes JO, Erikstad KE, Lorentzen S-H, Herzke D (2008a) Perfluornated and chlorinated pollutants as predictors of demographic parameters in an endangered seabird. Environ Pollut 27:1383–1392

    CAS  Google Scholar 

  • Bustnes JO, Borgå K, Erikstad KE, Lorentzen S-H, Herzke D (2008b) Perfluorinated, brominated, and chorinated contaminants in a population of Lesser black-backed gulls (Larus fuscus). Environ Toxicol Chem 27:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Bustnes JO, Tveraa T, Fauchald P, Utne-Skaare J (2008c) The potential impact of environmental variation on the concentration and ecological effects of pollutants in a marine top predator. Environ Int 34:193–201

    Article  PubMed  CAS  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Correa SM, Adkins-Regan E, Johnson PA (2005) High progesterone during avian meiosis bias sex ratios towards females. Biol Lett 1:215–218

    Article  PubMed  CAS  Google Scholar 

  • Cramp S (1983) Birds of the Western Palaearctic. Oxford University Press, Oxford

    Google Scholar 

  • Drouillard KG (2001) Modeling the toxicokinetics and biomagnification of polychlorinated biphenyls (PCBs) in birds. PhD thesis. Trent University, Peterborough, ON, Canada

  • Ewen JG, Cassey P, Møller AP (2004) Facultative primary sex ratio variation: a lack of evidence in birds? Proc Roy Soc B 271:1277–1282

    Article  Google Scholar 

  • Fox GA (1995) Tinkering with the tinkerer: pollution versus evolution. Environ Health Perspect 103:93–100

    Article  PubMed  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Hanson N, Åberg P, Sunderlôf (2005) Population- level effects of male biased broods in eelpout (Zoarches viviparus). Environ Toxicol Chem 24:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Hario M, Hirvi JP, Hollmen T, Rudback E (2004) Organochlorine concentrations in diseased vs. healthy gull chicks from the northern Baltic. Environ Pollut 127:411–423

    Article  PubMed  CAS  Google Scholar 

  • Herbert CE, Norstrom RJ, Weseloh DVC (1999) A quarter century of environmental surveillance: the Canadian Wildlife Service, Great Lakes herring gull monitoring program. Environ Rev 44:147–166

    Article  Google Scholar 

  • Kalmbach E, Nager RG, Griffiths R, Furness RW (2001) Increased reproductive effort results in male-biased offspring sex ratio: an experimental study in a species with reversed sexual size dimorphism. Proc Roy Soc Lond B 268:2175–2179

    Article  CAS  Google Scholar 

  • Love OP, Chin EH, Wynne-Edwards KE, Williams TD (2005) Stress hormones: a link between maternal condition and sex-biased reproductive investment. Am Nat 166:751–766

    Article  PubMed  Google Scholar 

  • Mineau P (1982) Levels of major organochlorine contaminants in sequentially-laid herring gull eggs. Chemosphere 11:679–685

    Article  CAS  Google Scholar 

  • Muir DCG, Wagemann R, Hargrave BT, Thomas DJ, Peakall DB, Norstrom RJ (1992) Arctic marine ecosystem contamination. Sci Total Environ 122:75–134

    Article  PubMed  CAS  Google Scholar 

  • Nager RG, Monaghan P, Griffiths DC, Houston DC, Dawson R (1999) Experimental demonstration that offspring sex ratio varies with maternal condition. Proc Natl Acad Sci 69:570–573

    Article  Google Scholar 

  • Nager RG, Monaghan P, Houston DC (2000) Parental condition, brood sex ratio and differential young survival: an experimental study in gulls (Larus fuscus). Behav Ecol Sociobiol 48:452–457

    Article  Google Scholar 

  • Newsted JL, Jones PD, Coady K, Giesy JP (2005) Avian toxicity reference values for perfluorooctane sulfonate. Environ Sci Technol 39:9357–9362

    Article  PubMed  CAS  Google Scholar 

  • Norstrom RJ, Clark TP, Jeffrey DA, Won HT, Gilman AP (1986) Dynamics of organochlorine compounds in herring gulls (Larus argentatus): I. Distribution and clearance of [14C] DDE in free-living herring gulls (Larus argentatus). Environ Toxicol Chem 5:41–48

    Article  CAS  Google Scholar 

  • Petrie M, Schwabl H, Brande-Lavridsen, Burke T (2001) Maternal investment: sex differences in avian yolk hormone levels. Nature 412:498–499

    Article  PubMed  CAS  Google Scholar 

  • Pike TW, Petrie M (2003) Potential mechanisms of avian sex manipulation. Biol Rev 78:553–574

    Article  PubMed  Google Scholar 

  • Pike TW, Petrie M (2005) Offspring sex ratio is related to paternal train elaboration and yolk corticosterone in pewfowl. Biol Lett 1:204–207

    Article  PubMed  CAS  Google Scholar 

  • Pike TW, Petrie M (2006) Experimental evidence that corticosterone affects offspring sex ratios in quail. Proc Roy Soc B 272:1093–1098

    Article  Google Scholar 

  • Pilz KM, Adkins-Regan E, Schwabl H (2005) No sex difference in yolk steroid concentrations of avian eggs at laying. Biol Lett 1:318–321

    Article  PubMed  Google Scholar 

  • Rutkowska J, Cichoñ M (2006) Maternal testosterone affects the primary sex ratio and offspring survival in zebra finches. Anim Behav 71:1283–1288

    Article  Google Scholar 

  • Sagerup K, Henriksen EO, Skorping A, Utne-Skaare J, Gabrielsen GW (2000) Intensity of parasitic nematodes increases with organochlorine level in the glaucous gull. J Appl Ecol 37:532–539

    Article  CAS  Google Scholar 

  • SAS Institute (2008) SAS 9.2 Foundation for Microsoft Windows. SAS Insitute, Cary

    Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  PubMed  CAS  Google Scholar 

  • Veiga JP, Viñuela J, Cordero PJ, Aparicio JM, Polo V (2004) Experimentally increased testosterone affects social rank and primary sex ratio in the spotless starling. Horm Behav 46:47–53

    Article  PubMed  CAS  Google Scholar 

  • West SA, Reece SE, Sheldon BC (2002) Sex ratios. Heredity 88:117–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Norwegian Directorate for Nature Management. We thank Jorg Welcker, Morten Helberg and others for assistance in the field and Rob Barrett and Sveinn-Are Hanssen and two anonymous referees for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Einar Erikstad.

Additional information

Communicated by J. Graves

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikstad, K.E., Bustnes, J.O., Lorentsen, SH. et al. Sex ratio in lesser black-backed gull in relation to environmental pollutants. Behav Ecol Sociobiol 63, 931–938 (2009). https://doi.org/10.1007/s00265-009-0736-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-009-0736-3

Keywords

Navigation