Skip to main content

Advertisement

Log in

Retinoblastoma cell-derived Twist protein promotes regulatory T cell development

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The development of tumor tissue-infiltrating regulatory T cell (Treg) is incompletely understood. This study investigates the role of retinoblastoma cell (Rbc)-derived Twist‑related protein 1 (Twist) in the Treg development.

Methods

The surgically removed Rb tissues were collected. Rbcs were cultured with CD4+ T cells to assess the role of Rbc-derived Twist in the Treg generation.

Results

We found that more than 90% Rbcs expressed Twist. Foxp3+ Tregs were detected in the Rb tissues that were positively correlated with the Twist expression in Rbcs, negatively associated with Rb patient survival and sight survival. Treating Rbcs with hypoxia promoted the Twist expression that could be detected in the cytoplasm, nuclei and on the cell surface. Twist activated CD4+ T cells by binding the TLR4/myeloid differentiation factor 2 complex and promoted the transforming growth factor-β-inducible early gene 1 product and Foxp3 expression. These Rbc-induced Foxp3+ Tregs showed immune-suppressive function on CD8+ T cell proliferation.

Conclusions

Rbcs express Twist, that induces IL-4+ Foxp3+ Tregs; the latter can inhibit CD8+ cytotoxic T cell activities. Therefore, Twist may play an important role in the pathogenesis of Rb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dimaras H, Corson TW, Cobrinik D et al (2015) Retinoblastoma. Nat Rev Dis Prim 1:15021. https://doi.org/10.1038/nrdp.2015.21

    Article  PubMed  Google Scholar 

  2. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, Reifenberger G, Weller M (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

    Article  CAS  PubMed  Google Scholar 

  3. Mendoza PR, Grossniklaus HE (2015) The biology of retinoblastoma. Prog Mol Biol Transl Sci 134:503–516. https://doi.org/10.1016/bs.pmbts.2015.06.012

    Article  PubMed  Google Scholar 

  4. Xu XL, Singh HP, Wang L, Qi DL, Poulos BK, Abramson DH, Jhanwar SC, Cobrinik D (2014) Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature 514:385–388. https://doi.org/10.1038/nature13813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andre P, Denis C, Soulas C et al (2018) Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175:1731–43.e13. https://doi.org/10.1016/j.cell.2018.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schietinger A, Greenberg PD (2014) Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 35:51–60. https://doi.org/10.1016/j.it.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Ali K, Soond DR, Pineiro R et al (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510:407–411. https://doi.org/10.1038/nature13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 16:356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  CAS  PubMed  Google Scholar 

  9. Puisieux A, Valsesia-Wittmann S, Ansieau S (2006) A twist for survival and cancer progression. Br J Cancer 94:13–17. https://doi.org/10.1038/sj.bjc.6602876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaliki S, Patel A, Iram S, Palkonda VAR (2017) Clinical presentation and outcomes of stage III or stage IV retinoblastoma in 80 Asian Indian patients. J Pediatr Ophthalmol Strabismus 54:177–184. https://doi.org/10.3928/01913913-20161019-01

    Article  PubMed  Google Scholar 

  11. Xu LZ, Xie RD, Xie H et al (2020) Chimeric specific antigen epitope-carrying dendritic cells induce interleukin-17(+) regulatory T cells to suppress food allergy. Clin Exp Allergy 50:231–243. https://doi.org/10.1111/cea.13528

    Article  CAS  PubMed  Google Scholar 

  12. Krishnakumar S, Mohan A, Mallikarjuna K, Venkatesan N, Biswas J, Shanmugam MP, Ren-Heidenreich L (2004) EpCAM expression in retinoblastoma: a novel molecular target for therapy. Invest Ophthalmol Vis Sci 45:4247–4250. https://doi.org/10.1167/iovs.04-0591

    Article  PubMed  Google Scholar 

  13. Takeuchi Y, Nishikawa H (2016) Roles of regulatory T cells in cancer immunity. Int Immunol 28:401–409. https://doi.org/10.1093/intimm/dxw025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pezzuto A, Carico E (2018) Role of HIF-1 in cancer progression: novel insights. A review. Curr Mol Med. 18:343–351. https://doi.org/10.2174/1566524018666181109121849

    Article  CAS  PubMed  Google Scholar 

  15. Mami-Chouaib F, Tartour E (2019) Editorial: tissue resident memory T cells. 10. https://doi.org/10.3389/fimmu.2019.01018

  16. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195. https://doi.org/10.1038/nature07830

    Article  CAS  PubMed  Google Scholar 

  17. Peng DJ, Zeng M, Muromoto R, Matsuda T, Shimoda K, Subramaniam M, Spelsberg TC, Wei WZ, Venuprasad K (2011) Noncanonical K27-linked polyubiquitination of TIEG1 regulates Foxp3 expression and tumor growth. J Immunol. 186:5638–5647. https://doi.org/10.4049/jimmunol.1003801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khanbabaei H, Teimoori A, Mohammadi M (2016) The interplay between microRNAs and Twist1 transcription factor: a systematic review. Tumour Biol 37:7007–7019. https://doi.org/10.1007/s13277-016-4960-y

    Article  CAS  PubMed  Google Scholar 

  19. Lin MC, Lin JJ, Hsu CL, Juan HF, Lou PJ, Huang MC (2017) GATA3 interacts with and stabilizes HIF-1alpha to enhance cancer cell invasiveness. Oncogene 36:4243–4252. https://doi.org/10.1038/onc.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, Huang MS, Wu ATH, Hsiao M (2017) Feedback regulation of ALDOA activates the HIF-1alpha/MMP9 axis to promote lung cancer progression. Cancer Lett 403:28–36. https://doi.org/10.1016/j.canlet.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  21. Vichalkovski A, Gresko E, Hess D, Restuccia DF, Hemmings BA (2010) PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene 29:3554–3565. https://doi.org/10.1038/onc.2010.115

    Article  CAS  PubMed  Google Scholar 

  22. Kishton RJ, Sukumar M, Restifo NP (2017) Metabolic regulation of T Cell longevity and function in tumor immunotherapy. Cell Metab 26:94–109. https://doi.org/10.1016/j.cmet.2017.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N (2019) CAR T cell therapy: a new era for cancer treatment (Review). Oncol Rep 42:2183–2195. https://doi.org/10.3892/or.2019.7335

    Article  CAS  PubMed  Google Scholar 

  24. Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G (2019) Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol. 10:43. https://doi.org/10.3389/fimmu.2019.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joseph JP, Harishankar MK, Pillai AA, Devi A (2018) Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 80:23–32. https://doi.org/10.1016/j.oraloncology.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Hajizadeh F, Okoye I, Esmaily M, Ghasemi Chaleshtari M, Masjedi A, Azizi G, Irandoust M, Ghalamfarsa G, Jadidi-Niaragh F (2019) Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci 237:116952. https://doi.org/10.1016/j.lfs.2019.116952

    Article  CAS  PubMed  Google Scholar 

  27. Ciesielska A, Hromada-Judycka A, Ziemlinska E, Kwiatkowska K (2019) Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-alpha synthesis in Mvarphis stimulated with LPS. J Leukoc Biol 106:1285–1301. https://doi.org/10.1002/jlb.2a0918-368rr

    Article  CAS  PubMed  Google Scholar 

  28. Nagai Y, Yanagibashi T, Watanabe Y et al (2012) The RP105/MD-1 complex is indispensable for TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells. Int Immunol 24:389–400. https://doi.org/10.1093/intimm/dxs040

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Zhang G, Huang J, Ma S, Mi K, Cheng J, Zhu Y, Zha X, Huang W (2016) Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-kappaB signaling in vitro. J Transl Med. 14:104. https://doi.org/10.1186/s12967-016-0845-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shang P, Tang Q, Hu Z, Huang S, Hu Y, Zhu J, Liu H (2020) Procyanidin B3 alleviates intervertebral disc degeneration via interaction with the TLR4/MD-2 complex. J Cell Mol Med 24:3701–3711. https://doi.org/10.1111/jcmm.15074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horvatinovich JM, Grogan EW, Norris M, Steinkasserer A, Lemos H, Mellor AL, Tcherepanova IY, Nicolette CA, DeBenedette MA (2017) Soluble CD83 inhibits T cell activation by binding to the TLR4/MD-2 complex on CD14(+) monocytes. J Immunol. 198:2286–2301. https://doi.org/10.4049/jimmunol.1600802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kammoun M, Piquereau J, Nadal-Desbarats L et al (2020) Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 228:e13394. https://doi.org/10.1111/apha.13394

    Article  CAS  Google Scholar 

  33. Zhang X, Yao Y, Wei WZ, Yang ZQ, Gu J, Zhou L (2017) Impaired epidermal Langerhans cell maturation in TGFbeta-inducible early gene 1 (TIEG1) knockout mice. Oncotarget. 8:112875–112882. https://doi.org/10.18632/oncotarget.22843

    Article  PubMed  PubMed Central  Google Scholar 

  34. Subramaniam M, Pitel KS, Withers SG, Drissi H, Hawse JR (2016) TIEG1 enhances Osterix expression and mediates its induction by TGFbeta and BMP2 in osteoblasts. Biochem Biophys Res Commun 470:528–533. https://doi.org/10.1016/j.bbrc.2016.01.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waddell KM, Kagame K, Ndamira A, Twinamasiko A, Picton SV, Simmons IG, Revill P, Johnston WT, Newton R (2015) Improving survival of retinoblastoma in Uganda. Br J Ophthalmol 99:937–942. https://doi.org/10.1136/bjophthalmol-2014-306206

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants of the National Nature and Science Foundation of China (81870706, 31570932, U1801286, 31000713, 31700805), Guangdong Provincial Key Laboratory of Regional Immunity and Diseases (2019B030301009), Cross Innovation Research Initiative Funds of Shenzhen University and Shenzhen science, technology and innovation committee (201002052, KQTD20170331145453160 and KQJSCX20180328095619081).

Author information

Authors and Affiliations

Authors

Contributions

RZ, YNS, XD, ZG, YS, ZZ and YL performed experiments, analyzed data and reviewed the manuscript. GN, PCY and BPM organized the study and supervised experiments. PCY designed the project and prepared manuscript.

Corresponding authors

Correspondence to Beiping Miao, Ping-Chang Yang or Guohui Nie.

Ethics declarations

Conflict of interest

The author declares that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Song, YN., Duo, X. et al. Retinoblastoma cell-derived Twist protein promotes regulatory T cell development. Cancer Immunol Immunother 70, 1037–1048 (2021). https://doi.org/10.1007/s00262-020-02744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02744-z

Keywords

Navigation