Skip to main content

Advertisement

Log in

Accuracy of enhanced and unenhanced MRI in diagnosing scaphoid proximal pole avascular necrosis and predicting surgical outcome

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Determine the sensitivity, specificity and accuracy of unenhanced and enhanced MRI in diagnosing scaphoid proximal pole (PP) avascular necrosis (AVN) and correlate whether MRI can help guide the selection of a vascularized or nonvascularized bone graft.

Methods

The study was approved by the IRB. Two MSK radiologists independently performed a retrospective review of unenhanced and enhanced MRIs from 18 patients (16 males, 2 females; median age, 17.5 years) with scaphoid nonunions and surgery performed within 65 days of the MRI. AVN was diagnosed on the unenhanced MRI when a diffusely decreased T1-W signal was present in the PP and on the enhanced MRI when PP enhancement was less than distal pole enhancement. Surgical absence of PP bleeding was diagnostic of PP AVN. Postoperative osseous union (OU) was assessed with computed tomography and/or radiographs.

Results

Sensitivity, specificity and accuracy for PP AVN were 71, 82 and 78 % for unenhanced and 43, 82 and 67 % for enhanced MRI. Patients with PP AVN on unenhanced MRI had 86 % (6/7) OU; 100 % (5/5) OU with vascularized bone grafts and 50 % (1/2) OU with nonvascularized grafts. Patients with PP AVN on enhanced MRI had 80 % (4/5) OU; 100 % (3/3) OU with vascularized bone grafts and 50 % (1/2) OU with nonvascularized grafts. Patients with viable PP on unenhanced and enhanced MRI had 91 % (10/11) and 92 % (12/13) OU, respectively, all but one with nonvascularized graft.

Conclusions

When PP AVN is evident on MRI, OU is best achieved with vascularized grafts. If PP AVN is absent, OU is successful with nonvascularized grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton NJ. The late consequences of scaphoid fractures. J Bone Joint Surg (Br). 2004;86-B:626–30.

    Article  Google Scholar 

  2. Adams JE, Steinmann SP. Acute scaphoid fractures. Orthop Clin N Am. 2007;38:229–35.

    Article  Google Scholar 

  3. Morgan WJ, Breen TF, Coumas JM, Schulz LA. Role of magnetic resonance imaging in assessing factors affecting healing in scaphoid nonunions. Clin Orthop Relat Res. 1997;336:240–6.

    Article  PubMed  Google Scholar 

  4. Ciprian S, Iochum S, Kohlmann R, Dautel G, Dap F, Blum A. MR imaging accuracy in the prediction of bone graft healing potential in scaphoid non-union. J Radiol. 2004;85:1699–706.

    Article  CAS  PubMed  Google Scholar 

  5. Gunal I, Ozcelik A, Gukturk E, Ada S, Demirtas M. Correlation of magnetic resonance imaging and intraoperative punctate bleeding to assess the vascularity of scaphoid nonunion. Arch Orthop Trauma Surg. 1999;119:285–7.

    Article  CAS  PubMed  Google Scholar 

  6. Perlik PC, Guilford WB. Magnetic resonance imaging to assess vascularity of scaphoid nonunions. J Hand Surg [Am]. 1991;16A(3):479–84.

    Article  Google Scholar 

  7. Sakuma M, Nakamura R, Imaeda T. Analysis of proximal fragment sclerosis and surgical outcome of scaphoid non-union by magnetic resonance imaging. J Hand Surg (Br). 1995;20B(2):201–5.

    Article  Google Scholar 

  8. Trumble TE. Avascular necrosis after scaphoid fracture: a correlation of magnetic resonance imaging and histology. J Hand Surg [Am]. 1990;15A(4):557–64.

    Article  Google Scholar 

  9. Desser TS, McCarthy S, Trumble TE. Scaphoid fractures and Kienbock’s disease of the lunate: MR imaging with histopathologic correlation. Magn Reson Imaging. 1990;8:357–61.

    Article  CAS  PubMed  Google Scholar 

  10. Fox MG, Gaskin CM, Chhabra AB, Anderson MW. Assessment of scaphoid viability with MRI: a reassessment of findings on unenhanced MR images. Am J Roentgenol. 2010;195:W281–6.

    Article  Google Scholar 

  11. Cerezal L, Abascal F, Canga A, Garcia-Valtuille R, Bustamante M, del Pinal F. Usefulness of gadolinium enhanced MR imaging in the evaluation of the vascularity of scaphoid nonunions. Am J Roentgenol. 2000;174:141–9.

    Article  CAS  Google Scholar 

  12. Singh AK, Davis TRC, Dawson JS, Oni JA, Downing ND. Gadolinium enhanced MR assessment of proximal fragment vascularity in nonunions after scaphoid fracture: does it predict the outcome of reconstructive surgery? J Hand Surg (Br). 2004;29B(5):444–8.

    Article  Google Scholar 

  13. Donati OF, Zanetti M, Nagy L, Bode B, Schweizer A, Pfirrmann CWA. Is dynamic gadolinium enhancement needed in MR imaging for the preoperative assessment of scaphoidal viability in patients with scaphoid nonunion? Radiology. 2011;260(3):808–16.

    Article  PubMed  Google Scholar 

  14. Anderson SE, Steinbach LS, Tschering-Vogel D, Martin M, Nagy L. MR imaging of avascular scaphoid nonunion before and after vascularized bone grafting. Skelet Radiol. 2005;34:314–20.

    Article  Google Scholar 

  15. Ciprian S, Iochum S, Kohlmann R, Dautel G, Dap F, Blum A. MR imaging accuracy in the prediction of bone graft healing potential in scaphoid non-union. J Radiol. 2004;85(10 Pt 1):1699–706. French.

    Article  CAS  PubMed  Google Scholar 

  16. Dailiana ZH, Zachos V, Varitimidis S, Papanagiotou P, Karantanas A, Malizos KN. Scaphoid nonunions treated with vascularised bone grafts: MRI assessment. Eur J Radiol. 2004;50(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  17. Imaeda T, Nakamura R, Miura T, Makino N. Magnetic resonance imaging in scaphoid fractures. J Hand Surg (Br). 1992;17-B:20–7.

    Article  Google Scholar 

  18. Sebag G, Ducou Le Pointe H, Klein I, et al. Dynamic gadolinium-enhanced subtraction MR imaging: a simple technique for the early diagnosis of Legg-Calvé-Perthes disease: preliminary results. Pediatr Radiol. 1997;27(3):216–20.

    Article  CAS  PubMed  Google Scholar 

  19. Sakai T, Sugano N, Nishii T, Haraguchi K, Ochi T, Ohzono K. MR findings of necrotic lesions and the extralesional area of osteonecrosis of the femoral head. Skelet Radiol. 2000;29(3):133–41.

    Article  CAS  Google Scholar 

  20. Dawson JS, Martel AL, Davis TRC. Scaphoid blood flow and acute fracture healing. A dynamic MRI study with enhancement with gadolinium. J Bone Joint Surg (Br). 2001;83-B:809–14.

    Article  Google Scholar 

  21. Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging—parametric “first-pass” images depict tissue vascularization and perfusion. Radiology. 1994;192(3):835–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest, grants or financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Fox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, M.G., Wang, D.T. & Chhabra, A.B. Accuracy of enhanced and unenhanced MRI in diagnosing scaphoid proximal pole avascular necrosis and predicting surgical outcome. Skeletal Radiol 44, 1671–1678 (2015). https://doi.org/10.1007/s00256-015-2221-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2221-6

Keywords

Navigation