Skip to main content
Log in

Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments

  • Original Article
  • Published:
Environmental Geology

Abstract

Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennetta CM, McKendryb IG, Kellyc S, Denikeb K, Kochb T (2006) Impact of the 1998 Gobi dust event on hospital admissions in the Lower Fraser Valley, British Columbia. Sci Total Environ 366:918–925

    Article  Google Scholar 

  • Budd AR, Wyborn LAI, Bastrakova IV (2005) The metallogenic potential of australian proterozoic granites. Geoscience Australia Record 2001/12. http://www.ga.gov.au/about/corporate/ga_authors/prot_granites/index.jsp

  • Bullard JE, McTainsh GH (2003) Aeolian–fluvial interactions in dryland environments: examples, concepts and Australia case study. Prog Phys Geogr 27:359–389

    Article  Google Scholar 

  • Buseck PR, Posfai M (1999) Airborne minerals and related aerosol particles: effects on climate and environment. Proc Natl Acad Sci USA 96:3372–3379

    Article  Google Scholar 

  • Castillo S, Moreno T, Querol X, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Gibbons W (2008) Trace element variation in size-fractionated African desert dusts. J Arid Environ. doi:10.1016/j.jaridenv.2007.12.007

  • Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY (2004) Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 95:151–155

    Article  Google Scholar 

  • Chow JC, Watson JG, Ashbaugh LL, Magliano KL (2003) Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmos Environ 37:1317–1340

    Article  Google Scholar 

  • Collins WJ, Williams IS, Shaw SE, McLaughlin NA (1995) The age of the Ormiston Pound granite: implications for Mesoproterozoic evolution of the Arunta Inlier, central Australia. Precambrian Res 71:91–105

    Article  Google Scholar 

  • Dyson I (1985) Frond-like fossils from the base of the late Precambrian Wilpena Group, South Australia. Nature 318:283–285

    Article  Google Scholar 

  • Eltayeb MAH, Injuk J, Maenhaut W, Van Grieken RE (2001) Elemental composition of mineral aerosol generated from Sudan Sahara sand. J Atmos Chemistry 40:247–273

    Article  Google Scholar 

  • Glaessner MF (1984) The dawn of animal life. Cambridge University Press, Cambridge

    Google Scholar 

  • Gray J, Murphy B (2002) Parent material and soil distribution. Nat Resour Manage 5:2–12

    Google Scholar 

  • Griffin DW, Kellogg CA, Shinn EA (2001) Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Glob Change Hum Health 2:20–33

    Article  Google Scholar 

  • Hefflin BJ, Jalaludin B, McClure E, Cobb N, Johnson CA, Jecha L et al (1994) Surveillance for dust storms and respiratory diseases in Washington State, 1991. Arch Environ Health 49:170–174

    Google Scholar 

  • Honda M, Yabuki S, Shimizu H (2004) Geochemical and isotopic studies of aolian sediments in China. Sedimentology 51:211–230

    Article  Google Scholar 

  • Jahn B, Gallet S, Han J (2001) Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and palaeosol evolution during the last 140 ka. Chem Geol 178:71–94

    Article  Google Scholar 

  • Jones TP, BéruBé KA, Reynolds LR, Richards RJ (2000) Microscopy of airborne particulates from open-cast coal pits. Proc Microsc Microanal 6:414–415

    Google Scholar 

  • Kiefert L, McTainsh GH, Nickling WG (1996) Sedimentological characteristic of Saharan and Australian dusts. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht

    Google Scholar 

  • Kwon HJ, Cho SH, Chun Y, Lagarde F, Pershagen G (2002) Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ Res Sect A 90:1–5

    Article  Google Scholar 

  • Marx SK, Kamber BS, McGowan HA (2005) Provenance of long-travelled dust determined with ultra-trace-element composition: a pilot study with samples from New Zealand glaciers. Earth Surf Process Landf 30:699–716

    Article  Google Scholar 

  • McTainsh GH (1989) Quaternary Aeolian dust processes and sediments in the Australian region. Quat Sci Rev 8:235–253

    Article  Google Scholar 

  • Moreno T, Querol X, Castillo S, Alastuey A, Cuevas E, Herrman L, Mounkaila M, Elvira J, Gibbons W (2006) Geochemical variations in aeolian mineral particles from the Sahara-Sahel dust corridor. Chemosphere 65:261–270

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochem Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 98:801–822

    Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–546

    Article  Google Scholar 

  • Ostro BD, Hurley S, Lipsett MJ (1999) Air pollution and daily mortality in the Coachella Valley, California: a study of PM10 dominated by coarse particles. Environ Res 81:231–238

    Article  Google Scholar 

  • Poitrasson F, Hanchar JM, Schaltegger U (2002) The current state and future of accessory mineral research. Chem Geol 191:3–24

    Article  Google Scholar 

  • Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA 96:3396–3403

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. doi:10.1029/2000RG000095

    Google Scholar 

  • Revel-Rolland M, De Deckker P, Delmonte B, Hesse PP, Magee JW, Basile-Doelsch I, Grousset F, Bosch D (2006) Eastern Australia: a possible source of dust in East Antarctic interglacial ice. Earth Planet Sci Lett 249:1–13

    Article  Google Scholar 

  • Ross M, Nolan RP, Langer AM, Cooper WC (1993) Health effects of mineral dusts other than asbestos. Rev Mineral 28:361–407

    Google Scholar 

  • Schütz L, Rahn K (1982) Trace elements in erodible soils. Atmos Environ 16:171–176

    Article  Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the questions of desert loess formation. Sedimentology 34:139–153

    Article  Google Scholar 

  • Verma GS (1989) Impact of soil derived aerosols on precipitation acidity, in India. Atmos Environ 23:2723–2728

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochem Cosmochim Acta 59:1217–1239

    Article  Google Scholar 

  • Willis IL (1984) Silverton 1:25.000 geological sheet, 7134-III-S. Geological Survey of New South Wales, Sydney

    Google Scholar 

  • Yadav S, Rajamani V (2004) Geochemistry of aerosols of northwestern part of India adjoining the Thar Desert. Geochem Cosmochim Acta 68:1975–1988

    Article  Google Scholar 

  • Yang X, Liu Y, Li C, Song Y, Zhu H, Jin X (2007) Rare earth elements of aeolian deposits in Northern China and their implications for determining the provenance of dust storms in Beijing. Geomorphology 87:365–377

    Article  Google Scholar 

Download references

Acknowledgments

The authors will like to thank Jim West (from the New South Wales Department of Primary Industries) for his help supplying us the 1:25.000 Silverton geological map (Geological Survey of New South Wales), and the two referees whose time and efforts allowed us to improve on the original text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, T., Amato, F., Querol, X. et al. Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments. Environ Geol 57, 411–420 (2009). https://doi.org/10.1007/s00254-008-1312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1312-2

Keywords

Navigation