Skip to main content

Advertisement

Log in

Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular polymeric substances (EPSs) possess diversified ecological role, including the cell adhesion to surfaces and cell protection, and are highly involved in the interactions between the bacterial cells and the bulk environments. Interestingly, EPSs find valuable applications in the industrial field, due to their chemical versatility. In this context, Antarctic bacteria have not been given the attention they deserve as producers of EPS molecules and a very limited insight into their EPS production capabilities and biotechnological potential is available in literature to date. Antarctic EPS-producing bacteria are mainly psychrophiles deriving from the marine environments (generally sea ice and seawater) around the continent, whereas a unique thermophilic bacterium, namely Parageobacillus thermantarcticus strain M1, was isolated from geothermal soil of the crater of Mount Melbourne. This mini-review is aimed at showcasing the current knowledge on EPS-producing Antarctic bacteria and the chemical peculiarities of produced EPSs, highlighting their biotechnological potential and the yet unexplored treasure they represent for biodiscovery.

Key Points

The exploration of Antarctic bacteria as EPS producers is still scarcely developed

EPSs are produced by psychrophilic and thermophilic Antarctic bacteria

The presence of mannose and glucose is frequently observed in Antarctic EPSs

To date, marine matrices have been mainly used to isolate Antarctic EPS-producers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arcarons N, Vendrell-Flotats M, Yeste M, Mercade E, López-Béjar M, Mogas T (2019) Cryoprotectant role of exopolysaccharide of Pseudomonas sp. ID1 in the vitrification of IVM cow oocytes. Reprod Fert Develop 31:1507–1519

    CAS  Google Scholar 

  • Bai Y, Zhang P, Chen G, Cao J, Huang T, Chen K (2012) Macrophage immunomodulatory activity of extracellular polysaccharide (PEP) of Antarctic bacterium Pseudoalteromonas sp. S-5. Int Immunopharmacol 12:611–617

    PubMed  CAS  Google Scholar 

  • Bales PM, Renke EM, May SL, Shen Y, Nelson DC (2013) Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One 8(6):e67950

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blanco Y, Rivas LA, González-Toril E, Ruiz-Bermejo M, Moreno-Paz M, Parro V, Palacín A, Aguilera Á, Puente-Sánchez F (2019) Environmental parameters, and not phylogeny, determine the composition of extracellular polymeric substances in microbial mats from extreme environments. Sci Total Environ 650:384–393

    PubMed  CAS  Google Scholar 

  • Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690

    PubMed  CAS  Google Scholar 

  • Bozal N, Manresa A, Castellvi J, Guinea J (1994) A new bacterial strain of Antarctica, Alteromonas sp. that produces a heteropolymer slime. Polar Biol 14:561–567

    Google Scholar 

  • Carillo S, Casillo A, Pieretti G, Parrilli E, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R, Marino G, Parrilli M, Randazzo A, Tutino ML, Corsaro MM (2015) A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (Glyco)proteins. J Am Chem Soc 137:179–189

    PubMed  CAS  Google Scholar 

  • Carrión O, Delgado L, Mercade E (2015) New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr Polym 117:1028–1034

    PubMed  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Finore I, Nicolaus B, Di Marco G, Michaud L, Lo Giudice A (2018a) Production and biotechnological potentialities of extracellular polymeric substances from sponge-associated Antarctic bacteria. Appl Environ Microbiol 84:e01624–e01617

    PubMed  PubMed Central  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Di Marco G, Michaud L, Lo Giudice A (2018b) Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ Sci Pollut Res Int 25:4667

    PubMed  CAS  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Finore I, Di Marco G, Michaud L, Lo Giudice A (2019) Isolation, characterization and optimization of EPSs produced by a cold-adapted Marinobacter isolate from Antarctic seawater. Antarct Sci 31:1–11

    Google Scholar 

  • Casillo A, Parrilli E, Sannino F, Lindner B, Lanzetta R, Parrilli M, Tutino ML, Corsaro MM (2015) Structural investigation of the oligosaccharide portion isolated from the lipooligosaccharide of the permafrost psychrophile Psychrobacter arcticus 273-4. Mar Drugs 13:4539–4555

    PubMed  PubMed Central  CAS  Google Scholar 

  • Casillo A, Parrilli E, Sannino F, Mitchell DE, Gibson MI, Marino G, Lanzetta R, Parrilli M, Cosconati S, Novellino E, Randazzo A, Tutino ML, Corsaro MM (2017) Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: a strategy for cryoprotection. Carbohydr Polym 156:364–371

    PubMed  CAS  Google Scholar 

  • Casillo A, Lanzetta R, Parrilli M, Corsaro MM (2018) Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar Drugs 16:69

    PubMed Central  Google Scholar 

  • Chen G, Qian W, Li J, Xu Y, Chen K (2015) Exopolysaccharide of Antarctic bacterium Pseudoalteromonas sp. S-5 induces apoptosis in K562 cells. Carbohydr Polym 121:107–114

    PubMed  CAS  Google Scholar 

  • Cócera M, López O, Coderch L, Mercadé ME, Parra JL, De La Maza A, Guinea J (2001a) Partitioning of SDS in liposomes coated by the exopolymer excreted by Pseudoalteromonas antarctica NF3 as a measure of vesicle protection against this surfactant. J Biomat Sci 12:255–266

    Google Scholar 

  • Cócera M, López O, Sabés M, Parra JL, Guinea J, De La Maza A (2001b) Assembly properties and applications of a new exopolymeric compound excreted by Pseudoalteromonas antarctica NF3. J Biomat Sci 12:409–427

    Google Scholar 

  • Corsaro MM, Lanzetta R, Parrilli E, Parrilli M, Tutino ML, Ammarino S (2004) Influence of growth temperature on lipid and phosphate contents of surface polysaccharides from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. J Bacteriol 186:29–34

    PubMed  PubMed Central  CAS  Google Scholar 

  • de Pascale D, De Santi C, Fu J, Landfald B (2012) The microbial diversity of polar environments is a fertile ground for bioprospecting. Mar Genomics 8:15–22

    PubMed  Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:92

    Google Scholar 

  • Di Donato P, Fiorentino G, Anzelmo G, Tommonaro G, Nicolaus B, Poli A (2011) Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste Biomass Valoriz 2:103–111

    Google Scholar 

  • Di Donato P, Poli A, Taurisano V, Abbamondi G, Nicolaus B, Tommonaro G (2016) Recent advances in the study of marine microbial biofilm: from the involvement of quorum sensing in its production up to biotechnological application of the polysaccharide fractions. J Mar Sci Eng 4(2):34

    Google Scholar 

  • Du AG-L, Zykwinska A, Sinquin C, Ratiskol J, Weiss P, Vinatier C, Guicheux J, Delbarre-Ladrat C, Colliec-Jouault S (2017) Purification of the exopolysaccharide produced by Alteromonas infernus: identification of endotoxins and effective process to remove them. Appl Microbiol Biotechnol 101(17):6597–6606

    PubMed  CAS  Google Scholar 

  • Duus JØ, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100(12):4589–4614

    PubMed  CAS  Google Scholar 

  • Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024

    PubMed  PubMed Central  CAS  Google Scholar 

  • Finore I, Lama L, Di Donato P, Romano I, Tramice A, Leone L, Nicolaus B, Poli A (2019) Parageobacillus thermantarcticus, an Antarctic cell factory: from crop residue valorization by green chemistry to astrobiology studies. Diversity 11:128

    Google Scholar 

  • Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs) - part I: structural and ecological aspects. Water Sci Technol 43(6):1–8

    PubMed  CAS  Google Scholar 

  • Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2012) Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta 93(Supplement C):153–159

    PubMed  Google Scholar 

  • Kim SK, Yim JH (2007) Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J Microbiol 45:510–514

    PubMed  CAS  Google Scholar 

  • Kim SJ, Kim BG, Parka HU, Yim JH (2016) Cryoprotective properties and preliminary characterization of exopolysaccharide (P-Arcpo 15) produced by the Arctic bacterium Pseudoalteromonas elyakovii Arcpo 15. Prep Biochem Biotechnol 46:261–266

    PubMed  CAS  Google Scholar 

  • Koo H, Hakim JA, Morrow CD, Crowley MR, Andersen DT, Bej AK (2018) Metagenomic analysis of microbial community compositions and cold-responsive stress genes in selected Antarctic lacustrine and soil ecosystems. Life 8:29

    PubMed Central  CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substance in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res 49:2163–2181

    CAS  Google Scholar 

  • Kucukasik F, Kazak H, Guney D, Finore I, Poli A, Yenigun O, Nicolaus B, Oner ET (2011) Molasses as fermentation substrate for Levan production by Halomonas sp. Appl Microbiol Biotechnol 89:1729–1740

    PubMed  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    PubMed  CAS  Google Scholar 

  • Li J, Chen K, Lin X, He P, Li G (2006) Production and characterization of an extracellular polysaccharide of Antarctic marine bacteria Pseudoalteromonas sp. S-15-13. Acta Oceanol Sin 25:106–115

    CAS  Google Scholar 

  • Li J, Chen KS, Sun XQ, Song JP, Li GY (2007a) Isolation, chemical characteristics and immunity activity of an extracellular polysaccharide EPSI isolated from Antarctic bacterium Pseudoalteromonas sp. S-15–13. High Technol Lett 13:216–220

    CAS  Google Scholar 

  • Li J, Chen KS, Li GY, Liu SF, Liu ZT (2007b) Inhibitory effects of exopolysaccharide (EPS) from an Antarctic psychrotrophs Pseudoalteromonas sp. S-15-13 on the sarcoma180 of mice. Chin J Mar Drugs 26:9–13

    Google Scholar 

  • Lo Giudice A, Rizzo C (2018) Bacteria associated with marine benthic invertebrates from polar environments: unexplored frontiers for biodiscovery? Diversity 10:80

    Google Scholar 

  • Madigan MT, Kempher ML, Bender KS, Sullivan P, Sattley MW, Dohnalkova AC, Joye SB (2017) Characterization of a cold-active bacterium isolated from the South Pole “Ice Tunnel”. Extremophiles 21:891–901

    PubMed  CAS  Google Scholar 

  • Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B (1996) Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl Environ Microbiol 62:3265–3269

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mancuso Nichols CA, Garron S, Bowman JP, Raguénès G, Guèzennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    PubMed  CAS  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005a) Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Google Scholar 

  • Mancuso Nichols C, Lardiere SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005b) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Google Scholar 

  • Mancuso Nichols C, Bowman JP, Guezennec J (2005c) Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic Sea ice bacterium grown in batch culture. Appl Environ Microbiol 71(7):3519–3523

    Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polymeric substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    PubMed  CAS  Google Scholar 

  • Mishra A, Jha B (2013) Microbial exopolysaccharides. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: applied bacteriology and biotechnology. Springer, Berlin, pp 179–192

    Google Scholar 

  • Nicolaus B, Lama L, Esposito E, Manca MC, di Prisco G, Gambacorta A (1996) Bacillus thermoantarcticus sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 16:101–104

    Google Scholar 

  • Pagliano G, Ventorino V, Panico A, Pepe O (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 10:113–136

    PubMed  PubMed Central  Google Scholar 

  • Palma Esposito F, Ingham CJ, Hurtado-Ortiz R, Bizet C, Tasdemir D, de Pascale D (2018) Isolation by miniaturized culture Chip of an Antarctic bacterium Aequorivita sp. with antimicrobial and anthelmintic activity. Biotechnol Rep 20:e00281

    Google Scholar 

  • Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, De Pascale D, Fani R (in press) The art of adapting to extreme environments: the model system Pseudoalteromonas. Phys Life Rev. https://doi.org/10.1016/j.plrev.2019.04.003

  • Poli A, Schiano Moriello V, Esposito E, Lama L, Gambacorta A, Nicolaus B (2004) Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnol Lett 26:1635–1638

    PubMed  CAS  Google Scholar 

  • Poli A, Esposito E, Orlando P, Lama L, Giordano A, de Appolonia F, Nicolaus B, Gambacorta A (2007) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38

    PubMed  CAS  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rangaswamy BE, Vanitha KP, Hungund BS (2015) Microbial cellulose production from bacteria isolated from rotten fruit. Int J Polym Scie 2015:8

    Google Scholar 

  • Rizzo C, Lo Giudice A (2018) Marine invertebrates: underexplored sources of bacteria producing biologically active molecules. Diversity 10:52

    CAS  Google Scholar 

  • Spanò A, Gugliandolo C, Lentini V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67(1):21–29

    PubMed  Google Scholar 

  • Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–213

    PubMed  CAS  Google Scholar 

  • Underwood GJC, Fietz S, Papadimitriou S, Thomas DN, Dieckmann GS (2010) Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic Sea ice. Mar Ecol Prog Ser 404:1–19

    CAS  Google Scholar 

  • Underwood GJC, Aslam SN, Niemi A, Norman L, Meiners KM, Laybourn-Parry J, Paterson H, Thomas DN (2013) Broad-scale predictability of carbohydrates and EPS in Antarctic and Arctic Sea ice. Proc Natl Acad Sci U S A 110:15734–15739

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vásquez-Ponce F, Higuera-Llantén S, Soledad Pavlov M, Ramírez-Orellana R, Marshall SH, Olivares-Pacheco J (2017) Alginate overproduction and biofilm formation by psychrotolerant Pseudomonas mandelii depend on temperature in Antarctic marine sediments. Electron J Biotechnol 28:27–34

    Google Scholar 

  • Verdugo P (2012) Marine microgels. Annu Rev Mar Sci 4:375–400

    Google Scholar 

  • Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K (2017) Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta Part A: Mol Biomol Spectr 185(Supplement C):317–335

    CAS  Google Scholar 

  • Wuertz S, Muller E, Spaeth R, Pfleiderer P, Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial floes with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24:116–123

    CAS  Google Scholar 

  • Yu L, Sun G, Wei J, Wang Y, Du C, Li J (2016) Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3. Chin J Oceanol Limnol 34:1064–1071

    CAS  Google Scholar 

  • Zhang P, Li J, Yu L, Wei J, Xu T, Sun G (2018) Transcriptomic analysis reveals the effect of the exopolysaccharide of Psychrobacter sp. B-3 on gene expression in RAW264.7 macrophage cells. Acta Oceanol Sin 37:46–53

    Google Scholar 

Download references

Funding

This research was supported by grants from the PNRA (Programma Nazionale di Ricerche in Antartide), Italian Ministry of Education and Research (Research Project PNRA16_00020).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and wrote the manuscript, and approved the final version.

Corresponding author

Correspondence to Angelina Lo Giudice.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Giudice, A., Poli, A., Finore, I. et al. Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Appl Microbiol Biotechnol 104, 2923–2934 (2020). https://doi.org/10.1007/s00253-020-10448-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10448-8

Keywords

Navigation