Skip to main content

Advertisement

Log in

International Space Station environmental microbiome — microbial inventories of ISS filter debris

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ASTM-E11 (1995) Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. In: ASTM (ed). vol 33 CFR 159.125. American Society for Testing and Materials, Washington DC

  • Benardini J, Ballinger J, Crawford R, Roman M, Sumner R, Venkateswaran K In: 34th International Conference on Environmental Systems, International Space Station Internal Thermal Coolant System: an initial assessment of the microbial communities within fluids from ground support and flight hardware, July 2005, Rome, Italy, 2005. SAE Technical paper series

  • Boyden DG (1962) The bacterial flora in fleet ballistic missile submarines during prolonged submergence. In: U.S. Naval Medical Research Laboratory Report No. 386. In: Bureau of Medicine and Surgery ND (ed). vol 21 (17)

  • Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Dürre P, Gottschalk G (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305(5684):671–673. doi:10.1126/science.1100330

    Article  PubMed  Google Scholar 

  • Burge HA, Pierson DL, Groves TO, Strawn KF, Mishra SK (2000) Dynamics of airborne fungal populations in a large office building. Curr Microbiol 40(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Cabral JPS (2010) Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci Total Environ 408(20):4285–4295. doi:10.1016/j.scitotenv.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the International Space Station. Microb Ecol 47(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary N, Marr KA (2011) Impact of Aspergillus fumigatus in allergic airway diseases. Clin Transl Allergy 1(1):4. doi:10.1186/2045-7022-1-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • Dali P, Giugliano ER, Vellozzi EM, Smith MA (2001) Susceptibilities of Propionibacterium acnes ophthalmic isolates to moxifloxacin. Antimicrob Agents Chemother 45(10):2969–2970. doi:10.1128/aac.45.10.2969-2970.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200. doi:10.1093/annhyg/meg032

    Article  CAS  PubMed  Google Scholar 

  • Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43. doi:10.1186/1471-2180-8-43

    Article  PubMed Central  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  • Edmiston CE Jr, Seabrook GR, Cambria RA, Brown KR, Lewis BD, Sommers JR, Krepel CJ, Wilson PJ, Sinski S, Towne JB (2005) Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery 138(4):579–582

    Article  Google Scholar 

  • Ferguson JK, Taylor GR, Mieszkuc BJ (1975) Microbiological investigations, pp 83–103. Scientific and Technical Information Office. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. PNAS 107(14):6477–6481. doi:10.1073/pnas.1000162107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagemeyer O, Bünger J, Kampen V, Raulf-Heimsoth M, Drath C, Merget R, Brüning T, Broding HC (2013) Occupational allergic respiratory diseases in garbage workers: relevance of molds and Actinomycetes. In: Pokorski M (ed) Neurobiology of eespiration. Adv Exp Med Biol 788:313–320, Springer Netherlands

    Article  CAS  PubMed  Google Scholar 

  • Hashino S, Takahashi S, Morita R, Kanamori H, Onozawa M, Kawamura T, Kahata K, Kondo T, Tokimatsu I, Sugita T, Akizawa K, Asaka M (2013) Fungemia due to Trichosporon dermatis in a patient with refractory Burkitt's leukemia. Blood Res 48(2):154–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. doi:10.1038/nature11234

    Article  Google Scholar 

  • Huttunen K, Rintala H, Hirvonen M-R, Vepsäläinen A, Hyvärinen A, Meklin T, Toivola M, Nevalainen A (2008) Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: the effect on biological activity and microbial flora. Environ Res 107(3):291–298. doi:10.1016/j.envres.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  • Jussila J, Komulainen H, Kosma VM, Pelkonen J, Hirvonen MR (2002) Inflammatory potential of the spores of Penicillium spinulosum isolated from indoor air of a moisture-damaged building in mouse lungs. Environ Toxicol Pharmacol 12(3):137–145

    Article  CAS  PubMed  Google Scholar 

  • Katherine T, Steve L, Rachel E (2010) Development of a modified vacuum cleaner for lunar surface systems. 40th International Conference on Environmental Systems. International Conference on Environmental Systems (ICES). American Institute of Aeronautics and Astronautics, Washington, DC

    Google Scholar 

  • Kawamura Y, Li Y, Liu H, Huang X, Li Z, Ezaki T (2001) Bacterial population in Russian space station "Mir". Microbiol Immunol 45(12):819–828

    Article  CAS  PubMed  Google Scholar 

  • Koenig DW, Pierson DL (1997) Microbiology of the Space Shuttle water system. Water Sci Technol 35(11–12):59–64

    Article  CAS  PubMed  Google Scholar 

  • Kwan K, Cooper M, La Duc MT, Vaishampayan P, Stam C, Benardini JN, Scalzi G, Moissl-Eichinger C, Venkateswaran K (2011) Evaluation of procedures for the collection, processing, and analysis of biomolecules from low-biomass surfaces. Appl Environ Microbiol 77(9):2943–2953. doi:10.1128/aem.02978-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5(10):977–985

    Article  PubMed  Google Scholar 

  • La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K (2007) Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol 73(8):2600–2611. doi:10.1128/AEM.03007-06

    Article  PubMed Central  PubMed  Google Scholar 

  • La Duc MT, Vaishampayan P, Nilsson HR, Torok T, Venkateswaran K (2012) Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol 78(16):5912–5922. doi:10.1128/AEM.01435-12

    Article  PubMed Central  PubMed  Google Scholar 

  • Levine HB, Cobet AB (1970) The tektite-I dive. Mycological aspects. Arch Environ Health 20(4):500–505

    Article  CAS  PubMed  Google Scholar 

  • Mantle PG, McHugh KM, Adatia R, Heaton JM, Gray T, Turner DR (1991) Penicillium aurantiogriseum-induced, persistent renal histopathological changes in rats; an experimental model for Balkan endemic nephropathy competitive with ochratoxin A. IARC Sci Publ 115:119–127

    PubMed  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618. doi:10.1038/ismej.2011.139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moissl C, Hosoya N, Bruckner J, Stuecker T, Roman M, Venkateswaran K (2007) Molecular microbial community structure of the Regenerative Enclosed Life Support Module Simulator air system. Int J Astrobiol 6(2):131–145

    Article  CAS  Google Scholar 

  • Morris JE (1972) Microbiology of the submarine environment. Proc R Soc Med 65(9):799–800

    CAS  PubMed Central  PubMed  Google Scholar 

  • NASA (2010) Reference guide to the Inernational Space Station. In: NASA HQ (ed). vol NP-2010-09-682-HQ. National Aeronautics and Space Administration, Washington, DC

  • Newcombe DA, LaDuc MT, Vaishampayan P, Venkateswaran K (2008) Impact of assembly, testing, and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room. Int J Astrobiol 7(3–4):223–236

    Article  Google Scholar 

  • Nocker A, Richter-Heitmann T, Montijn R, Schuren F, Kort R (2010) Discrimination between live and dead cellsin bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int Microbiol 13(2):59–65

    CAS  PubMed  Google Scholar 

  • NRC (2011) Committee for the decadal survey on biological physical sciences in space: recapturing a future for space exploration: life and physical sciences research for a new era. The National Academies Press

  • Perry JL, Coston JE (2014) Analysis of particulate and fiber debris samples returned from the International Space Station. In: 44th International Conference on Environmental Systems, Tucson, AZ, July 13–17, 2014. Curran Associates, Inc

  • Perry A, Lambert P (2011) Propionibacterium acnes: infection beyond the skin. Expert Rev Anti-Infect Ther 9(12):1149–1156. doi:10.1586/eri.11.137

    Article  CAS  PubMed  Google Scholar 

  • Pierson DL (2001) Microbial contamination of spacecraft. Gravit Space Biol Bull 14(2):1–6

    CAS  PubMed  Google Scholar 

  • Pierson DL, Ott CM, Groves TO (2002) Characterization of microbial activity in the chamber systems and environment. Univelt, San Diego, pp 229–259

    Google Scholar 

  • Rawsthorne H, Dock CN, Jaykus LA (2009) PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol 75(9):2936–2939. doi:10.1128/AEM.02524-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rintala H (2011) Actinobacteria in indoor environments: exposures and respiratory health effects. Front Biosci (Sch Ed) 3:1273–1284

    Article  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310. doi:10.1371/journal.pone.0027310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stenberg B, Eriksson N, Hansson M. K., Ho¨o¨g J, Sandstro¨m M, Sundell J, Wall S (1993) The Office Illness Project in northern Sweden. An interdisciplinary study of the “sick building-syndrome” (SBS). In: Indoor Air'93, Helsinki, Finland

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor GR, Graves RC, Brockett RM, Ferguson JK, Mieszkuc BJ (1977) Skylab environmental and crew microbiological studies. In: Johnston R, Dietlein LF (eds) Biomedical results from Skylab. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 53–63

    Google Scholar 

  • Thomas TL, Hooper TI, Camarca M, Murray J, Sack D, Mole D, Spiro RT, Horn WG, Garland FC (2000) A method for monitoring the health of US Navy submarine crewmembers during periods of isolation. Aviat Space Environ Med 71(7):699–705

    CAS  PubMed  Google Scholar 

  • Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21(4):606–625. doi:10.1128/cmr.00013-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsapko VG, Chudnovets AJ, Sterenbogen MJ, Papach VV, Dutkiewicz J, Skórska C, Krysińska-Traczyk E, Golec M (2011) Exposure to bioaerosols in the selected agricultural facilities of the Ukraine and Poland — a review. Ann Agric Environ Med AAEM 18(1):19–27

    CAS  Google Scholar 

  • Upsher JF, Fletcher LE, Upsher CM (1994) Microbiological conditions on Oberon submarines. Department of Defence, Defence Science and Technology Organisation, Melbourne

    Google Scholar 

  • Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL, Venkateswaran K (2013) New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J 7(2):312–324 doi:http://www.nature.com/ismej/journal/v7/n2/suppinfo/ismej2012114s1.html

    Google Scholar 

  • Venkateswaran K, Hattori N, La Duc MT, Kern R (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 52(3):367–377

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran K, La Duc MT, Vaishampayan P (2012) Genetic inventory task: final report, JPL Publication 12–12, vol 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, pp 1–117

    Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548. doi:10.1128/mmbr.00005-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward MD, Chung YJ, Copeland LB, Doerfler DL (2010) A comparison of the allergic responses induced by Penicillium chrysogenum and house dust mite extracts in a mouse model. Indoor Air 20(5):380–391. doi:10.1111/j.1600-0668.2010.00660.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This research was funded by a 2012 Space Biology NNH12ZTT001N grant # 19-12829-26 under Task Order NNN13D111T award to K. Venkateswaran. J. Cisneros, a Louis Stokes Alliance for Minority Participation – Bridge to the Doctorate (LSAMP-BD) fellow, was supported by the LSAMP-BD (Cohort X) program (National Science Foundation grant # HRD-1246662). The authors gratefully acknowledge ISS Expedition 31 crew for sample collection and D. Eisenman, JPL for effective coordination of sample procurement. We would also like to thank JSC Microbiology Laboratory members in performing culture-based analysis and Y. Sun (Research and Testing Laboratory) for trouble shooting discussion on the pyrosequencing method. The authors are indebted to M. Jones and C. Guethe from JPL for critical review of this manuscript. © 2014 California Institute of Technology. Government sponsorship acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasthuri Venkateswaran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkateswaran, K., Vaishampayan, P., Cisneros, J. et al. International Space Station environmental microbiome — microbial inventories of ISS filter debris. Appl Microbiol Biotechnol 98, 6453–6466 (2014). https://doi.org/10.1007/s00253-014-5650-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5650-6

Keywords

Navigation