Skip to main content
Log in

Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Self-assembling amphipathic peptides (SAPs) are a category of peptides that have unique sequences with alternating hydrophobic and hydrophilic residues that can spontaneously assemble into ordered nanostructures. In this study, we investigated the potential of fusion technique with SAPs to improve the thermal stability of lipoxygenase (LOX) from Pseudomonas aeruginosa. Six SAPs were individually fused to the N terminus of the LOX that resulted to the SAP–LOX fusions with approximately 2.3- to 4.5-fold enhanced thermal stability at 50 °C. The specific activities of the SAP–LOX fusions were also increased by 1.0- to 2.8-fold as compared with the wild-type LOX. This is the first report on the improvement of the thermal stability and specific activity of an enzyme by the fused SAPs, suggesting a simple technique to improve the catalytic properties of the recombinant enzymes by fusion expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Busquets M, Deroncele V, Vidal-Mas J, Rodriguez E, Guerrero A, Manresa A (2004) Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into ( S )-( E )-10-hydroxy-8-octadecenoic acid. Anton Leeuw Int J G 85:129–139

    Article  CAS  Google Scholar 

  • Casey R, Hughes RK (2004) Recombinant lipoxygenases and oxylipin metabolism in relation to food quality. Food Biotechnol 18:135–170

    Article  CAS  Google Scholar 

  • Clantin B, Tricot C, Lonhienne T, Stalon V, Villeret V (2001) Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. Eur J Biochem 268:3937–3942

    Article  PubMed  CAS  Google Scholar 

  • Damm KL, Carlson HA (2006) Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures. Biophys J 90:4558–4573

    Article  PubMed  CAS  Google Scholar 

  • Fenel F, Leisola M, Janis J, Turunen O (2004) A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II. J Biotechnol 108:137–143

    Article  PubMed  CAS  Google Scholar 

  • Fung SY, Yang H, Bhola PT, Sadatmousavi P, Muzar E, Liu M, Chen P (2009) Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine: complexation, release and in vitro delivery. Adv Funct Mater 19:74–83

    Article  CAS  Google Scholar 

  • Gao Y, Zhao F, Wang Q, Zhang Y, Xu B (2010) Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes. Chem Soc Rev 39:3425–3433

    Article  PubMed  CAS  Google Scholar 

  • Gardner HW (1996) Lipoxygenase as a versatile biocatalyst. J Am Oil Chem Soc 73:1347–1357

    Article  CAS  Google Scholar 

  • Ge J, Lu D, Yang C, Liu Z (2011) A lipase-responsive vehicle using amphipathic polymer synthesized with the lipase as catalyst. Macromol Rapid Comm 32:546–550

    CAS  Google Scholar 

  • Hughes RK, Wu Z, Robinson DS, Hardy D, West SI, Fairhurst SA, Casey R (1998) Characterization of authentic recombinant pea-seed lipoxygenases with distinct properties and reaction mechanisms. Biochem J 333:33–43

    PubMed  CAS  Google Scholar 

  • Iwakura M, Honda S (1996) Stability and reversibility of thermal denaturation are greatly improved by limiting terminal flexibility of Escherichia coli dihydrofolate reductase. J Biochem 119:414–420

    Article  PubMed  CAS  Google Scholar 

  • Jasniewski J, Cailliez-Grimal C, Chevalot I, Millière JB, Revol-Junelles AM (2009) Interactions between two carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 on target bacteria and Caco-2 cells. Food Chem Toxicol 47:893–897

    Article  PubMed  CAS  Google Scholar 

  • Joshi M, Adhikari B, Aldred P, Panozzo J, Kasapis S, Barrow C (2012) Interfacial and emulsifying properties of lentil protein isolate. Food Chem 143:1343–1353

    Article  Google Scholar 

  • Kannan N, Vishveshwara S (2000) Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Protein Eng 13:753–761

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Nakai S (1980) Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim Biophys Acta 624:13–20

    Article  PubMed  CAS  Google Scholar 

  • Kermasha S, Dioum N, Bisakowski B (2001) Biocatalysis of lipoxygenase in selected organic solvent media. J Mol Catal B-Enzym 11:909–919

    Article  CAS  Google Scholar 

  • Koutsopoulos S, Kaiser L, Eriksson HM, Zhang S (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev 41:1721–1728

    Article  PubMed  CAS  Google Scholar 

  • Kuzmanic A, Zagrovic B (2010) Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J 98:861–871

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lazar KL, Miller-Auer H, Getz GS, Orgel JP, Meredith SC (2005) Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure. Biochemistry 44:12681–12689

    Article  PubMed  CAS  Google Scholar 

  • Leemhuis H, Rozeboom HJ, Dijkstra BW, Dijkhuizen L (2004) Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Proteins 54:128–134

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Zhang J, Liu S, Zhang D, Xu Z, Wu J, Li J, Du G, Chen J (2012) Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Appl Microbiol Biot. doi:10.1007/s00253-012-4457-6

  • Machius M, Declerck N, Huber R, Wiegand G (2003) Kinetic stabilization of Bacillus licheniformis α-amylase through introduction of hydrophobic residues at the surface. J Biol Chem 278:11546–11553

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T (1989) Molecular cloning: a laboratory manual/J. Sambrook, EF Fritsch, T. Maniatis. New York: Cold Spring Harbor Laboratory PressS

  • Matsumoto K, Vaughn M, Bruce BD, Koutsopoulos S, Zhang S (2009) Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time. J Phys Chem B 113:75–83

    Article  PubMed  CAS  Google Scholar 

  • Matsuura T, Miyai K, Trakulnaleamsai S, Yomo T, Shima Y, Miki S, Yamamoto K, Urabe I (1999) Evolutionary molecular engineering by random elongation mutagenesis. Nat Biotechnol 17:58–61

    Article  PubMed  CAS  Google Scholar 

  • Mishra A, Loo Y, Chuah RDYJ, Heeb H, Ying J, Hauser C (2011) Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today 6:232–239

    Article  CAS  Google Scholar 

  • Ó’Fágáin C (2003) Enzyme stabilization—recent experimental progress. Enzyme Microb Tech 33:137–149

    Article  Google Scholar 

  • Pearce FG, Dobson RC, Jameson GB, Perugini MA, Gerrard JA (2011) Characterization of monomeric dihydrodipicolinate synthase variant reveals the importance of substrate binding in optimizing oligomerization. Biochim Biophys Acta 1814:1900–1909

    Article  PubMed  CAS  Google Scholar 

  • Reddy GB, Bharadwaj S, Surolia A (1999) Thermal stability and mode of oligomerization of the tetrameric peanut agglutinin: a differential scanning calorimetry study. Biochemistry 38:4464–4470

    Article  PubMed  CAS  Google Scholar 

  • Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl 45:7745–7751

    Article  PubMed  CAS  Google Scholar 

  • Schoch GA, Attias R, Belghazi M, Dansette PM, Werck-Reichhart D (2003) Engineering of a water-soluble plant cytochrome P450, CYP73A1, and NMR-based orientation of natural and alternate substrates in the active site. Plant Physiol 133:1198–1208

    Article  PubMed  CAS  Google Scholar 

  • Soliman W, Bhattacharjee S, Kaur K (2010) Adsorption of an antimicrobial peptide on self-assembled monolayers by molecular dynamics simulation. J Phys Chem B 114:11292–11302

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Okamoto T, Okada J, Tanaka S, Angkawidjaja C, Koga Y, Kanaya S (2011) Stabilization by fusion to the C-terminus of hyperthermophile Sulfolobus tokodaii RNase HI: a possibility of protein stabilization tag. PLoS One 6:e16226

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tsumoto K, Yasutake Y, Umetsu M, Yao M, Fukada H, Tanaka I, Kumagai I (2004) How oligomerization contributes to the thermostability of an archaeon protein: protein l-isoaspartyl-o-methyltransferase from Sulfolobus toloda II. J Biol Chem 279:32957–32967

    Article  PubMed  CAS  Google Scholar 

  • Tendeng C, Krin E, Soutourina OA, Marin A, Danchin A, Bertin PN (2003) A novel H-NS-like protein from an antarctic psychrophilic bacterium reveals a crucial role for the N-terminal domain in thermal stability. J Biol Chem 278:18754–18760

    Article  PubMed  CAS  Google Scholar 

  • Vance R, Hong S, Gronert K, Serhan C, Mekalanos J (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. P Natl Acad Sci USA 101:2135

    Article  CAS  Google Scholar 

  • Vega M, Karboune S, Kermasha S (2005) Stability of immobilized soybean lipoxygenase in selected organic solvent media. Appl Biochem Biotechnol 127:29–42

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol R 65:1–43

    Article  CAS  Google Scholar 

  • Wang Q, Yang Z, Gao Y, Ge W, Wang L, Xu B (2008) Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter 4:550–553

    Article  CAS  Google Scholar 

  • Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S (2011) Peptide surfactants for cell-free production of functional G protein-coupled receptors. P Natl Acad Sci USA 108:9049–9054

    Article  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–673

    Article  PubMed  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Xing L, Zhou B, Lin Z (2011) Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact 10:9

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Fung SY, Pritzker M, Chen P (2007) Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide. PLoS One 2:e1325

    Article  PubMed  Google Scholar 

  • Yeh JI, Du S, Tortajada A, Paulo J, Zhang S (2005) Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 44:16912–16919

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11:3787

    PubMed  CAS  Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. P Natl Acad Sci USA 90:3334–3338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Byong H. Lee for critical reading and suggestions on the manuscript. This work was supported by the National Natural Science Foundation of China (no. 31171639, no. 31000031, and no. 31070711), the National High Technology Research and Development Program of China (No. 2011AA100905), the NCET-10-0461, the Natural Science Foundation of Jiangsu Province (No. BK2010147), and the Independent Innovation Program of Jiangnan University (JUSRP11215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wu or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Liu, S., Zhang, D. et al. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides. Appl Microbiol Biotechnol 97, 9419–9427 (2013). https://doi.org/10.1007/s00253-013-4751-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4751-y

Keywords

Navigation