Skip to main content

Advertisement

Log in

Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Addressing the need to recover energy from the treatment of domestic wastewater, a 120-L microbial electrolysis cell was operated on site in Northern England, using raw domestic wastewater to produce virtually pure hydrogen gas (100 ± 6.4 %) for a period of over 3 months. The volumetric loading rate was 0.14 kg of chemical oxygen demand (COD) per cubic metre per day, just below the typical loading rates for activated sludge of 0.2–2 kg COD m−3 day−1, at an energetic cost of 2.3 kJ/g COD, which is below the values for activated sludge 2.5–7.2 kJ/g COD. The reactor produced an equivalent of 0.015 L H2 L−1 day−1, and recovered around 70 % of the electrical energy input with a coulombic efficiency of 55 %. Although the reactor did not reach the breakeven point of 100 % electrical energy recovery and COD removal was limited, improved hydrogen capture and reactor design could increase the performance levels substantially. Importantly, for the first time, a ‘proof of concept’ has been made, showing that this technology is capable of energy capture as hydrogen gas from low strength domestic wastewaters at ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboutalebi H, Sathasivan A, Krishna KCB, Kohpaei AJ (2011) Expediting COD removal in microbial electrolysis cells by increasing biomass concentration. Bioresour Technol 102:3981–3984

    Article  PubMed  CAS  Google Scholar 

  • Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418

    Article  PubMed  CAS  Google Scholar 

  • Bretschger O, Gorby YA, Nealson KH (2010) A survey of direct electron transfer from microbes to electronically active surfaces. In: Rabaey K, Angenent L, Schröder U, Keller J (eds) Bioelectrochemical systems: From extracellular electron transfer to biotechnological application. IWA Publishing, London, p 488

    Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Logan BE (2008) Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Water Sci Technol 58:853–857

    Article  PubMed  CAS  Google Scholar 

  • Cheng SA, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913

    Article  PubMed  CAS  Google Scholar 

  • Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu GL, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063

    Article  PubMed  CAS  Google Scholar 

  • EEC (1991) Council directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). Page 40. Official Journal of the European Communities.

  • Fan YZ, Xu ST, Schaller R, Jiao J, Chaplen F, Liu H (2011) Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens Bioelectron 26:1908–1912

    Article  PubMed  CAS  Google Scholar 

  • Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637

    Article  PubMed  CAS  Google Scholar 

  • Grady CPL, Daigger GT, Lim HG (1999) Biological wastewater treatment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Heidrich ES, Curtis TP, Dolfing J (2011) Determination of the internal chemical energy of wastewater. Environ Sci Technol 45:827–832

    Article  PubMed  CAS  Google Scholar 

  • Holmes DE, Bond DR, O'Neil RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190

    Article  PubMed  CAS  Google Scholar 

  • Kiely PD, Rader G, Regan JM, Logan BE (2011a) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresour Technol 102:361–366

    Article  PubMed  CAS  Google Scholar 

  • Kiely PD, Regan JM, Logan BE (2011b) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22:378–385

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Hwang MH, Jang NJ, Hyun SH, Lee ST (2004) Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int J Hydrog Energy 29:1133–1140

    CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  PubMed  CAS  Google Scholar 

  • Logan B (2008) Microbial fuel cells. John Wiley & Sons, Inc., New Jersey

    Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Ren NQ, Zhao X, Wang HA, Wu D, Xing DF (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energ Environ Sci 4:1329–1336

    Article  CAS  Google Scholar 

  • Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871–881

    Article  PubMed  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L, Vanbroekhoven K (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sust Energ Rev 15:1305–1313

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Adv 2:1248–1263

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  PubMed  CAS  Google Scholar 

  • Rader GK, Logan BE (2010) Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrog Energ 35:8848–8854

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energ 31:1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008a) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    Article  PubMed  CAS  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008b) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  PubMed  CAS  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755

    Article  CAS  Google Scholar 

  • Sleutels T, Hamelers HVM, Buisman CJN (2011) Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. Bioresour Technol 102:399–403

    Article  PubMed  CAS  Google Scholar 

  • Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011) Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresour Technol 102:3193–3199

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Liu W, Ren N, Zhou J, Cheng S (2010) Key factors affecting microbial anode potential in a microbial electrolysis cell for H(2) production. Int J Hydrog Energ 35:13481–13487

    Article  CAS  Google Scholar 

  • Wang AJ, Sun D, Cao GL, Wang HY, Ren NQ, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Merrill MD, Logan BE (2010) The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. Int J Hydrog Energ 35:12020–12028

    Article  CAS  Google Scholar 

  • Zhang F, Pant D, Logan BE (2011) Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens Bioelectron 30:49–55

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff at Northumbrian Water Limited, Andrew Moore, Steve Robson and Laura Stephenson, as without their support this project would not have been possible. The authors also thank Christine Jeans for preparing the reactor diagrams. This work was financially supported by the Engineering and Physical Sciences Research Council and Northumbrian Water Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Heidrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidrich, E.S., Dolfing, J., Scott, K. et al. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl Microbiol Biotechnol 97, 6979–6989 (2013). https://doi.org/10.1007/s00253-012-4456-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4456-7

Keywords

Navigation