Skip to main content
Log in

A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel strain exhibiting entomopathogenic and chitinolytic activity was isolated from mangrove marsh soil in India. The isolate was identified as Brevibacillus laterosporus by phenotypic characterization and 16S rRNA sequencing and designated Lak1210. When grown in the presence of colloidal chitin as the sole carbon source, the isolate produced extracellular chitinases. Chitinase activity was inhibited by allosamidin indicating that the enzymes belong to the family 18 chitinases. The chitinases were purified by ammonium sulfate precipitation followed by chitin affinity chromatography yielding chitinases and chitinase fragments with 90, 75, 70, 55, 45, and 25 kDa masses. Mass spectrometric analyses of tryptic fragments showed that these fragments belong to two distinct chitinases that are almost identical to two putative chitinases, a 89.6-kDa four-domain chitodextrinase and a 69.4-kDa two-domain enzyme called ChiA1, that are encoded on the recently sequenced genome of B. laterosporus LMG15441. The chitinase mixture showed two pH optima, at 6.0 and 8.0, and an optimum temperature of 70 °C. The enzymes exhibited antifungal activity against the phytopathogenic fungus Fusarium equiseti. Insect toxicity bioassays with larvae of diamondback moths (Plutella xylostella), showed that addition of chitinases reduced the time to reach 50 % mortality upon infection with non-induced B. laterosporus from 3.3 to 2.1 days. This study provides evidence for the presence of inducible, extracellular chitinolytic enzymes in B. laterosporus that contribute to the strain’s antifungal activity and insecticidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brurberg MB, Nes IF, Eijsink VG (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581–1589

    Article  CAS  Google Scholar 

  • Cai Y, Yan J, Hu X, Han B, Yuan Z (2007) Improving the insecticidal activity against resistant Culex quinquefasciatus mosquitoes by expression of chitinase gene chiAC in Bacillus sphaericus. Appl Environ Microbiol 73:7744–7746

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145

    Article  CAS  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • de Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LK, Zahner V (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664

    Article  Google Scholar 

  • Di Pietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens—isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313

    Article  Google Scholar 

  • Djukic M, Poehlein A, Thürmer A, Daniel R (2011) Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates. J Bacteriol 193:5535–5536

    Article  CAS  Google Scholar 

  • Favret ME, Yousten AA (1985) Insecticidal activity of Bacillus laterosporus. J Invertebr Pathol 45:195–203

    Article  CAS  Google Scholar 

  • Flexner JL, Belnavis DL (1998) Microbial insecticides. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publishers, London, pp 35–62

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  Google Scholar 

  • Gooday GW (1999) Aggressive and defensive roles for chitinases. EXS 87:157–169

    CAS  Google Scholar 

  • Gordon RE, Haynes WC, Pang CH (1973) The genus Bacillus. USDA Agriculture Handbook number 427. United States Department of Agriculture, Washington

    Google Scholar 

  • Horn SJ, Sorlie M, Vaaje-Kolstad G, Norberg AL, Synstad B, Varum KM, Eijsink VGH (2006) Comparative studies of chitinases A, B and C from Serratia marcescens. Biocatal Biotransform 24:39–53

    Article  CAS  Google Scholar 

  • Huang CJ, Wang TK, Chung SC, Chen CY (2005a) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28–9. J Biochem Mol Biol 38:82–88

    Article  CAS  Google Scholar 

  • Huang X, Tian B, Niu Q, Yang J, Zhang L, Zhang K (2005b) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    Article  CAS  Google Scholar 

  • Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–999

    Article  CAS  Google Scholar 

  • Koga D, Karasuda S, Tanaka S, Kajihara H, Yamamoto Y (2003) Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Biosci Biotech Biochem 67:221–224

    Article  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    Article  CAS  Google Scholar 

  • Laubach CA (1916) Spore-bearing bacteria in water. J Bacteriol 1:505–512

    CAS  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum—antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:12734–12734

    Article  Google Scholar 

  • Mensink BJWGH, Scheepmaker JWA (2007) How to evaluate the environmental safety of microbial plant protection products: a proposal. Biocontrol Sci Technol 17:3–20

    Article  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  Google Scholar 

  • Neiendam Nielsen M, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Orlova MV, Smirnova TA, Ganushkina LA, Yacubovich VY, Azizbekyan RR (1998) Insecticidal activity of Bacillus laterosporus. Appl Environ Microbiol 64:2723–2725

    CAS  Google Scholar 

  • Panbangred W, Thamthiankul S, Moar WJ, Miller ME (2004) Improving the insecticidal activity of Bacillus thuringiensis subsp aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biot 65:183–192

    Google Scholar 

  • Peters EC, Horn DM, Tully DC, Brock A (2001) A novel multifunctional labeling reagent for enhanced protein characterization with mass spectrometry. Rapid Commun Mass Spectrom 15:2387–2392

    Article  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    CAS  Google Scholar 

  • Rivers DB, Vann CN, Zimmack HL, Dean DH (1991) Mosquitocidal activity of Bacillus laterosporus. J Invertebr Pathol 58:444–447

    Article  CAS  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Sampson MN, Gooday GW (1998) Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144:2189–2194

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera. Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    Article  CAS  Google Scholar 

  • Shimahara K, Takiguchi Y (1988) Preparation of crustacean chitin. Methods Enzymol 161:417–423

    Article  CAS  Google Scholar 

  • Soberón M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349

    Article  Google Scholar 

  • Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P, Pesatcha P, Yamabhai M (2010) Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour Technol 101:4096–4103

    Article  CAS  Google Scholar 

  • Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  CAS  Google Scholar 

  • Synstad B, Gåseidnes S, Van Aalten DM, Vriend G, Nielsen JE, Eijsink VGH (2004) Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur J Biochem 271:253–262

    Article  CAS  Google Scholar 

  • Tronsmo A, Harman GE (1993) Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal Biochem 208:74–79

    Article  CAS  Google Scholar 

  • Yuan ZM, Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP (2002) Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93:374–379

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grant 178428 from the Norwegian Research Council. We thank Morten Skaugen and Magnus Arntzen at The NorProteomics Consortium for valuable help with the protein identification, Anne Cathrine Bunæs for technical assistance and Torfinn Torp at the Norwegian Institute for Agricultural and Environmental Research for help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. H. Eijsink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, L., Eijsink, V.G.H., Meadow, R. et al. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biotechnol 97, 1601–1611 (2013). https://doi.org/10.1007/s00253-012-4019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4019-y

Keywords

Navigation