Skip to main content
Log in

Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The response regulator protein is a core element of two-component signaling pathway. In this study, we investigated functions of BRRG-1 of Botrytis cinerea, a gene that encodes a putative response regulator protein, which is homologous to Rrg-1 in Neurospora crassa. The BRRG-1 gene deletion mutant ΔBrrg1-62 was unable to produce conidia. The mutant showed increased sensitivity to osmotic stress mediated by NaCl and KCl, and to oxidative stress generated by H2O2. Additionally, the mutant was more sensitive to the fungicides iprodione, fludioxonil, and triadimefon than the parental strain. Western-blot analysis showed that the Bos-2 protein, the putative downstream component of Brrg-1, was not phosphorylated in the ΔBrrg1-62. Real-time polymerase chain reaction assays showed that expression of BOS-2 also decreased significantly in the mutant. All of the defects were restored by genetic complementation of the ΔBrrg1-62 with the wild-type BRRG-1 gene. Plant inoculation tests showed that the mutant did not show changes in pathogenicity on rapeseed leaves. These results indicated that Brrg-1 is involved in the regulation of asexual development, sensitivity to iprodione, fludioxonil, and triadimefon fungicides, and adaptation to osmotic and oxidative stresses in B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banno S, Noguchi R, Yamashita K, Fukumori F, Kimura M, Yamaguchi I, Fujimura M (2007) Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr Genet 51:197–208

    Article  CAS  Google Scholar 

  • Barrett JF, Hoch JA (1998) Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Ch 42:1529–1536

    CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two component signal transduction genes in fungal pathogens. Eukaryot Cell 6:1151–1161

    Article  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis spp., and diseases they cause in agricultural systems—an introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 1–6

    Google Scholar 

  • Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K (2005) Aspergillus nidulans HOG pathway is activated only by two-component signaling pathway in response to osmotic stress. Mol Microbiol 56:1246–1261

    Article  CAS  Google Scholar 

  • Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1923

    Article  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Izumitsu K, Yoshimi A, Tanaka C (2007) Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Eukaryot Cell 6:171–181

    Article  CAS  Google Scholar 

  • Jones CA, Greer-Phillips SE, Borkovich KA (2007) The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol Biol Cell 18:2123–2136

    Article  CAS  Google Scholar 

  • Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T (2004) Fungicide activity through activation of a fungal signaling pathway. Mol Microbiol 53:1785–1796

    Article  CAS  Google Scholar 

  • Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970

    CAS  Google Scholar 

  • Krantz M, Becit E, Hohmann S (2006) Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis. Curr Genet 49:152–165

    Article  CAS  Google Scholar 

  • Lamarre C, Ibrahim-Granet O, Du C, Calderone R, Latgé J (2007) Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet Biol 44:682–690

    Article  CAS  Google Scholar 

  • Liu X, Lu JP, Zhang L, Dong B, Min H, Lin FC (2007) Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6:977–1005

    Google Scholar 

  • Liu W, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol 45:1062–1074

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • McDonald BA, Martinez JP (1990) Restriction fragment length polymorphisms in Septoria tritici occur at high frequency. Curr Genet 17:133–138

    Article  CAS  Google Scholar 

  • Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T (2008) Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr Genet 54:185–195

    Article  CAS  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Article  CAS  Google Scholar 

  • Murakami Y, Tatebayashi K, Saito H (2008) Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase. Mol Cell Biol 7:2481–2494

    Article  Google Scholar 

  • Noguchi R, Banno S, Ichikawa R, Fukumori F, Ichiishi A, Kimura M, Yamaguchi I, Fujimura M (2007) Identifcation of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fudioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol 44:208–218

    Article  CAS  Google Scholar 

  • Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura (2007) Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Biophys Res Commun 363:639–644

    Article  CAS  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875

    Article  CAS  Google Scholar 

  • Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun M, Lenasi H, Perez-Martin J, Talbot N, Wendland J, Pietro AD (2009) Comparative genomics of MAP kinase and calcium–calcineurin signaling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298

    Article  CAS  Google Scholar 

  • Ruprich-Robert G, Chapeland-Leclerc F, Boisnard S, Florent M, Bories G, Papon N (2008) Contributions of the response regulators Ssk1p and Skn7p in the pseudohyphal development, stress adaptation, and drug sensitivity of the opportunistic yeast Candida lusitaniae. Eukaryot Cell 7:1071–1074

    Article  CAS  Google Scholar 

  • Saijo T, Miyazaki T, Izumikawa K, Mihara T, Takazono T, Kosai K, Imamura Y, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Kohno S (2010) Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia 169:81–90

    Article  CAS  Google Scholar 

  • Santos JL, Shiozaki K (2001) Fungal histidine kinases. Sci STKE 98:1–14

    Google Scholar 

  • Seet BT, Pawson T (2004) MAPK signaling: Sho business. Curr Biol 14:R708–R710

    Article  CAS  Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221

    Article  Google Scholar 

  • Singh P, Chauhan N, Ghosh A, Dixon F, Calderone R (2004) SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun 72:2390–2394

    Article  CAS  Google Scholar 

  • Sweigard J, Chumley F, Carroll A, Farrall L, Valent B (1997) A series of vectors for fungal transformation. Fungal Genet Newslett 44:52–53

    Google Scholar 

  • Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pêcheur P, Kunduru AR, Leroux P, Legendre L (2006) A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant Microbe Interact 9:1042–1050

    Article  Google Scholar 

  • Wolanin PM, Webre DJ, Stock JB (2003) Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry 42:14075–14082

    Article  CAS  Google Scholar 

  • Wormley FL Jr, Heinrich G, Miller JL, Perfect JR, Cox GM (2005) Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect Immun 73:5022–5030

    Article  CAS  Google Scholar 

  • Yamashita K, Shiozawa A, Banno S, Fukumori F, Ichiishi A, Kimura M, Fujimura M (2007) Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes Genet Syst 82:301–310

    Article  CAS  Google Scholar 

  • Yan L, Yang Q, Sundin GW, Li H, Ma Z (2010) The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol 47:753–760

    Article  CAS  Google Scholar 

  • Zarrinpar A, Bhattacharyya RP, Nittler MP, Lim WA (2004) Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol Cell 14:825–832

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the fund from Modern Agro-industry Technology Research System and National Science Foundation (30771430) to Z. Ma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Yang, Q., Jiang, J. et al. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea . Appl Microbiol Biotechnol 90, 215–226 (2011). https://doi.org/10.1007/s00253-010-3027-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3027-z

Keywords

Navigation