Skip to main content
Log in

Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Large quantities of the potentially toxic compound styrene are produced and used annually by the petrochemical and polymer-processing industries. It is as a direct consequence of this that significant volumes of styrene are released into the environment in both the liquid and the gaseous forms. Styrene and its metabolites are known to have serious negative effects on human health and therefore, strategies to prevent its release, remove it from the environment, and understand its route of degradation were the subject of much research. There are a large number of microbial genera capable of metabolizing styrene as a sole source of carbon and energy and therefore, the possibility of applying these organisms to bioremediation strategies was extensively investigated. From the multitude of biodegradation studies, the application of styrene-degrading organisms or single enzymes for the synthesis of value-added products such as epoxides has emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso S, Bartolome-Martin D, Alamo del M, Diaz E, Garcia JL, Perera J (2003a) Genetic characterisation of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene 319:71–83

    CAS  PubMed  Google Scholar 

  • Alonso S, Navarro-Llorens JM, Tormo A, Perera J (2003b) Construction of a bacterial biosensor for styrene. J Biotechnol 102:301–306

    CAS  PubMed  Google Scholar 

  • Arnold M, Reittu A, von Wright A, Martikainen PJ, Suihko ML (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744

    CAS  PubMed  Google Scholar 

  • Baggi G, Boga MM, Catelani D, Galli E, Treccani V (1983) Styrene catabolism by a strain of Pseudomonas fluorescens. Syst Appl Microbiol 4:141–147

    CAS  PubMed  Google Scholar 

  • Baikalov I, Schroder M, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus RP, Dickerson RE (1996) Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061

    CAS  PubMed  Google Scholar 

  • Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi S, Orsini F, Sello G, Colmegna A, Galli E, Bestetti G (2000) Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant Escherichia coli strain. Tetrahedron Lett 41:9157–9161

    CAS  Google Scholar 

  • Bestetti G, Galli E, Ruzzi M, Baldacci G (1984) Molecular characterisation of a plasmid from Pseudomonas fluorescens involved in styrene degradation. Plasmid 12:181–188

    CAS  PubMed  Google Scholar 

  • Choi J, Lee SY (2000) Economic considerations in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl Environ Microbiol 53:646–649

    CAS  Google Scholar 

  • Coschigano PW, Young LY (1997) Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl Environ Microbiol 63:652–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox HHJ, Moerman RE, Van Baalen S, Van Heiningen WNM, Doddema HJ, Harder W (1997) Performance of a styrene degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 62:216–224

    Google Scholar 

  • Cripps RE, Trudgill PW, Whateley JG (1978) The metabolism of 1-phenylethanol and acetophenone by Norcardia T5 and an Arthrobacter sp. Eur J Biochem 86:175–186

    CAS  PubMed  Google Scholar 

  • Djeribi R, Dezenclos T, Pauss A, Lebeault JM (2005) Removal of styrene from waste gas using a biological trickling filter. Eng Life Sci 5(5):450–457

    CAS  Google Scholar 

  • Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E (1998) Catabolism of phenylacetic acid in Escherichia coil. J Biol Chem 273:2594–25986

    Google Scholar 

  • Garcia B, Olivera ER, Minambres B, Fernandez-valverde M, Canedo LM, Prieto MA, Garcia JL, Martinez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. J Biol Chem 274:29228–29241

    CAS  PubMed  Google Scholar 

  • Guillemin MP, Berode M (1988) Biological monitoring of styrene: a review. Am Ind Hyg Assoc J 49:497–505

    CAS  PubMed  Google Scholar 

  • Hartmans S (1995) Microbial degradation of styrene. In: Biotransformations: microbiological degradation of health risk compounds. Elsevier Science, pp 227–238

  • Hartmans S, Smits JP, van der Werf MJ, Volkering F, deBont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmans S, van der Werf MJ, deBont JAM (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, Woink E, Konink G, Previsting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains, encoding the alkane hydroxylase enzyme system. Appl Microbiol Biotechnol 38:1–5

    CAS  Google Scholar 

  • Itoh N, Yoshida K, Okada K (1996) Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci Biotechnol Biochem 63:3783–3788

    Google Scholar 

  • Itoh N, Morihama R, Wang J, Okada K, Mizuguchi N (1997) Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10. Appl Environ Microbiol 63:3783–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwande A, Jang JH, Hirai M, Shoda M (2005) Enhancement of styrene removal by Pseudomonas sp. SR-5 in mixed culture with a benzoic acid-degrading bacterium in biofilter. Environ Technol 26(8):941–949

    Google Scholar 

  • Jang JH, Hirai M, Shoda M (2004) Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl Microbiol Biotechnol 65:349–355

    CAS  PubMed  Google Scholar 

  • Jang JH, Hirai M, Shoda M (2005a) Performance of a styrene-degrading biofilter inoculated with Pseudomonas sp. SR-5. J Biosci Bioeng 100(3):297–302

    CAS  PubMed  Google Scholar 

  • Jang JH, Hirai M, Shoda M (2005b) Effect of shutdown on styrene removal in a biofilter inoculated with Pseudomonas sp. SR-5. J Hazard Mater 30:297–302

    Google Scholar 

  • Jones BE, Dossonnet V, Kuster E, Hillen W, Deutscher J, Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535

    CAS  PubMed  Google Scholar 

  • Juneson C, Ward OP, Singh A (2001) Microbial treatment of a styrene-contaminated air stream in a biofilter with high elimination capacities. J Ind Microbiol Biotech 26(4):196–202

    CAS  Google Scholar 

  • Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preustin H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau PCK, Wang Y, Patel A, Labbe H, Bergeron H, Brousseau R, Konish Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94:1453–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leoni L, Ascenzi P, Bocedi A, Rampioni G, Castellini L, Zennaro E (2003) Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem Biophys Res Commun 303:926–931

    CAS  PubMed  Google Scholar 

  • Leoni L, Rampioni G, Di Stefano V, Zennaro E (2005) Dual role of the response regulator StyR in styrene catabolism regulation. Appl Environ Microbiol 91:5411–5419

    Google Scholar 

  • Lu C, Lin MR, Lin J (2001) Removal of styrene vapor from waste gases by a trickle-bed air biofilter. J Hazard Mater 82(3):233–245

    CAS  PubMed  Google Scholar 

  • Lu X, Zhang J, Wu Q, Chen GQ (2003) Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid-oxidation pathway in E. coli. FEMS Microbiol Lett 221:97–101

    CAS  PubMed  Google Scholar 

  • Malhautier LN, Khammar S, Bayle JL, Fanio (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22

    CAS  PubMed  Google Scholar 

  • Marconi AM, Beltrametti F, Bestetti G, Solinas F, Ruzzi M, Galli E, Zennaro E (1996) Cloning and characterization of styrene catabolism genes from Pseudomonasfluorescens ST. Appl Environ Microbiol 62:121–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marczynski B, Peel M, Baur X (2000) New aspects in genotoxic risk assessment of styrene exposure—a working hypothesis. Med Hypotheses 54:619–623

    CAS  PubMed  Google Scholar 

  • Martinez-Blanco H, Regleo A, Rodrigues-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090

    CAS  PubMed  Google Scholar 

  • McGrath M, Nieuwland J, Van Lith C (1999) Biofiltration of styrene and butylacetate at a dashboard manufacturer. Environ Prog 18:197–204

    CAS  Google Scholar 

  • Milani M, Leoni L, Rampioni G, Zennaro E, Ascenzi P, Bolognesi M (2005) An active-like structure in the unphosphorylated StyR response regulator suggests a phosphorylation dependent allosteric activation mechanism. Structure 13:1289–1297

    CAS  PubMed  Google Scholar 

  • Mohamed ME, Ismail W, Heider J, Fuchs G (2002) Aerobic metabolism of phenylacetic acid in Azoarcus evansli. Arch Microbiol 178:180–192

    CAS  Google Scholar 

  • Mooney A, O’Leary ND, Dobson ADW (2006) Cloning and functional characterisation of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72:1302–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata K, Araki S, Yokoyama K (1991) Assessment of the peripheral, central, and autonomic nervous system function in styrene workers. Am J Ind Med 20:775–784

    CAS  PubMed  Google Scholar 

  • Mutti A, Falzoi M, Romanelli MC, Bocchi MC, Ferroni C, Frandhini I (1988) Brain dopamine as a target for solvent toxicity: effects of some monocyclic aromatic hydrocarbons. Toxicology 49:77–82

    CAS  PubMed  Google Scholar 

  • Nishio T, Patel A, Wang Y, Lau PC (2001) Biotransformations catalyzed by cloned p-cymene monooxygenase from Pseudomonas putida F1. Appl Microbiol Biotechnol 55:321–325

    CAS  PubMed  Google Scholar 

  • Nothe C, Hartmans H (1994) Formation and degradation of styrene oxide stereoisomers by different microorganisms. Biocatalysis 10:219–225

    CAS  Google Scholar 

  • O’Connor KE, Dobson ADW (1997) Microbial degradation of alkenylbenzenes. In: Sheehan D (ed) Methods in biotechnology, vol. 2: bioremediation protocols. Humana Press, Totowa, NJ, pp 275–282

    Google Scholar 

  • O’Connor KC, Buckley CM, Hartmans S, Dobson ADW (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonasputida CA-3. Appl Environ Microbiol 61:544–548

    PubMed  PubMed Central  Google Scholar 

  • O’Connor KE, Duetz W, Wind B, Dobson ADW (1996) The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3. Appl Environ Microbiol 62:3594–3599

    PubMed  PubMed Central  Google Scholar 

  • O’Leary ND, O’Connor KE, Deutz W, Dobson ADW (2001a) Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev 26:403–417

    Google Scholar 

  • O’Leary ND, O’Connor KE, Deutz W, Dobson ADW (2001b) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147:973–979

    PubMed  Google Scholar 

  • O’Leary ND, O’Connor KE, Ward P, Goff M, Dobson ADW (2005) Genetic characterisation of accumulation of polyhydroxyalkonate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71:4280–4378

    Google Scholar 

  • Otto K, Hostetter K, Rothlisberger M, Witholt B, Schmid A (2004) Biochemical characterisation of StyAB from Pseudomonas sp. Strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 168:5292–5302

    Google Scholar 

  • Paca J, Koutsky B, Maryska M, Halecky M (2001) Styrene degradation along the bed height of perlite biofilter. J Chem Technol Biotechnol 76:873–878

    CAS  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, deLorenzo V, Kaiser A, Witholt B, Wubbolts MG (1999a) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65:5619–5623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999b) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng 69:91–100

    CAS  PubMed  Google Scholar 

  • Pao GM, Saier MH Jr (1995) Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 40:136–154

    CAS  PubMed  Google Scholar 

  • Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112

    CAS  PubMed  Google Scholar 

  • Pheonix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PC (2003) Characterisation of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalisation as a versatile biosensor. Environ Microbiol 5:1309–1327

    Google Scholar 

  • Quinn B (1996) Pollution engineering. Company sends only 17 percent of waste off site. 1:35–38 (June)

  • Ramsey BA, Saracovan I, Ramsey JA, Marchessault RH (1992) Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkonate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol 58:744–746

    Google Scholar 

  • Robinson VL, Wu T, Stock AM (2003) Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185:4186–4194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebert CS, Hall TA (1994) The neuroepidemiology of styrene: a critical review of representative literature. Crit Rev Toxicol 24:S57–S106

    PubMed  Google Scholar 

  • Reizer J, Saier MH Jr (1997) Modular multidomain phosphoryl transfer proteins of bacteria. Curr Opin Struct Biol 7:407–415

    CAS  PubMed  Google Scholar 

  • Santos PM, Blatny JM, Bartolo ID, Valla S, Zennaro E (2000) Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonasfluorescens ST. Appl Environ Microbiol 66:1305–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos PM, Leoni L, Di Bartolo I, Zennaro E (2002) Integration host factor is essential for the optimal expression of the styABCD operon in Pseudomonas fluorescens ST. Res Microbiol 153:527–536

    CAS  PubMed  Google Scholar 

  • Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opin Biotechnol 10(6):609–615

    CAS  PubMed  Google Scholar 

  • Sheridan BA, Curran TP, Dodd VA (2002) Assessment of the influence of media particle size on the biofiltration of odorous exhaust ventilation air from a piggery facility. Bioresour Technol 84:129–143

    CAS  PubMed  Google Scholar 

  • Shirai K, Hisatsuka K (1979) Isolation and identification of styrene assimilating bacteria. Agric Biol Chem 43:1595–1596

    CAS  Google Scholar 

  • Smith MR (1994) The physiology of aromatic hydrocarbons degrading bacteria. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 347–378

    Google Scholar 

  • Smith FL, Sorial GA, Suidan MT, Breen AW, Biswas P, Brenner RC (1996) Development of two biomass control strategies for extended stable operation of highly efficient biofilters with high toluene loadings. Environ Sci Technol 30:1744–1751

    CAS  Google Scholar 

  • Sorial GA, Smith FL, Suidan MT, Biswas P, Brenner RC (1995) Evaluation of trickle bed biofilter media for toluene removal. J Air Waste Manage Assoc 45:801–810

    CAS  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential and light. Microbiol Mol Biol Rev 63:479–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin KM, O’Connor KE (2005) Polyhydroxyalkonate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol Lett Dec 253(1):111–118

    CAS  Google Scholar 

  • US Environmental Protection Agency (1999) Integrated risk information system (IRIS) on styrene. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. Available at http://www.epa.gov/safewater/contaminants/dw_contamfs/styrene.html

  • US Inventory of Toxic Compounds (2001) TRI92. Toxics release inventory public data. Office of Pollution Prevention and Toxics, US EPA, Washington, DC, 94. Available at http://www.epa.gov

  • Utkin IB, Yachimov MM, Matveeva LN, Kozlyak EI, Rogozhin IS, Solomon ZG, Bezborodov AM (1991) Degradation of styrene and ethylbenzene by Pseudomonas species Y2. FEMS Microbiol Lett 77:237–242

    CAS  Google Scholar 

  • van der Walle GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int J Biol Macromol 25:23–128

    Google Scholar 

  • van der Walle GAM, de Koning GJM, Weusthuis RA, Eggink G (2001) Properties, modifications and applications of biopolyesters. Adv Biochem Eng Biotechnol 71:264–291

    Google Scholar 

  • Velasco A, Alonso S, Garcia JL, Perera J, Diaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkonate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–2052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward P, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two-step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40(7):2433–2437

    CAS  PubMed  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Microbial metabolism and biotransformation of styrene. J Appl Bacteriol 77:597–606

    CAS  PubMed  Google Scholar 

  • Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westblad C, Levindis YA, Richter H, Howard JB, Carlson J (2002) A study on toxic emissions from batch combustion of styrene. Chemosphere 49:395–412

    CAS  PubMed  Google Scholar 

  • Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121

    CAS  PubMed  Google Scholar 

  • Wubbolts MG, Reuvekamp P, Witholt B (1994a) TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Enzyme Microb Technol 16:608–615

    CAS  PubMed  Google Scholar 

  • Wubbolts MG, Hoven J, Melgert B, Witholt B (1994b) Efficient production of optically active styrene epoxides in two-liquid phase cultures. Enzyme Microb Technol 16:887–894

    CAS  Google Scholar 

  • Yoon IK, Park CH (2002) Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter. J Biosci Bioeng 93(2):165–169

    CAS  PubMed  Google Scholar 

  • Zilli M, Palazzi E, Sene L, Converti A, Del Borghi M (2001) Toluene and styrene removal from air in biofilters. Process Biochem 37:423–429

    CAS  Google Scholar 

  • Zilli M, Converti A, Di Felice R (2003) Macrokinetic and quantitative microbial investigation on a bench-scale biofilter treating styrene polluted gaseous streams. Biotechnol Bioeng 5(83):29–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. O’Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooney, A., Ward, P.G. & O’Connor, K.E. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol 72, 1–10 (2006). https://doi.org/10.1007/s00253-006-0443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0443-1

Keywords

Navigation