Skip to main content

Advertisement

Log in

Characterization of Toll-like receptor gene expression and the pathogen agonist response in the antarctic bullhead notothen Notothenia coriiceps

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the extreme Antarctic marine environment. We previously reported an extensive analysis of the Antarctic notothenioid transcriptome. In this study, we focused on a key component of the innate immune system, the Toll-like receptors (TLRs). We cloned the full-length sequence of 12 TLRs of N. coriiceps. The N. coriiceps transcriptome for TLR homologue (ncTLR) genes encode a typical TLR structure, with multiple extracellular leucine-rich regions and an intracellular Toll/IL-1 receptor (TIR) domain. Using phylogenetic analysis, we established that all of the cloned ncTLR genes could be classified into the same orthologous clade with other teleost TLRs. ncTLRs were widely expressed in various organs, with the highest expression levels observed in immune-related tissues, such as the skin, spleen, and kidney. A subset of the ncTLR genes was expressed at higher levels in fish exposed to pathogen-mimicking agonists, heat-killed Escherichia coli, and polyinosinic-polycytidylic acid (poly(I:C)). However, the mechanism involved in the upregulation of TLR expression following pathogen exposure in fish is currently unknown. Further research is required to elucidate these mechanisms and to thereby increase our understanding of vertebrate immune system evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528–533

    Article  CAS  PubMed  Google Scholar 

  • Bella J, Hindle K, McEwan P, Lovell S (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  CAS  PubMed  Google Scholar 

  • Boudinot P et al. (2014) A tetrapod–like repertoire of innate immune receptors and effectors for coelacanths. J Exp Zool Part B: Mol Dev Evol

  • Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol 19:457–472

    Article  CAS  PubMed  Google Scholar 

  • Chilmonczyk S (1992) The thymus in fish: development and possible function in the immune response. Annu Rev Fish Dis 2:181–200

    Article  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, e Sousa CR (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Article  CAS  PubMed  Google Scholar 

  • Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarct Sci 12:276–287

    Article  Google Scholar 

  • Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of non Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds.) Fishes of Antarctica. Springer, Milano, pp 3–26

  • Eastman JT, Pratt D, Winn W (1993) Antarctic fish biology: evolution in a unique environment. Academic, San Diego

    Google Scholar 

  • Freiberg A, Machner MP, Pfeil W, Schubert W-D, Heinz DW, Seckler R (2004) Folding and stability of the leucine-rich repeat domain of internalin B from Listeria monocytogenes. J Mol Biol 337:453–461

    Article  CAS  PubMed  Google Scholar 

  • Funami K, Matsumoto M, Oshiumi H, Akazawa T, Yamamoto A, Seya T (2004) The cytoplasmic ‘linker region’ in Toll-like receptor 3 controls receptor localization and signaling. Int Immunol 16:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Gibbard RJ, Morley PJ, Gay NJ (2006) Conserved features in the extracellular domain of human toll-like receptor 8 are essential for pH-dependent signaling. J Biol Chem 281:27503–27511

    Article  CAS  PubMed  Google Scholar 

  • Gorden KB et al (2005) Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 174:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166:15–19

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Hoar WS, Randall DJ, Iwama G, Nakanishi T (1997) The fish immune system: organism, pathogen, and environment, vol 15. Academic, San Diego

    Google Scholar 

  • Hoshino K et al (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J Immunol 162:3749–3752

    CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  CAS  PubMed  Google Scholar 

  • Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T (2010) Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol 34:855–865

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  CAS  PubMed  Google Scholar 

  • Kongchum P, Rexroad C III, Hallerman E, David L, Palti Y (2009) Single nucleotide polymorphism identification, genetic mapping and tissue expression of the rainbow trout TLR9 gene. Anim Genet 40:1001–1001

    Article  CAS  PubMed  Google Scholar 

  • Latz E et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Huang R, Li H, Luo D, Liao L, Zhu Z, Wang Y (2012) Cloning and characterization of the grass carp (Ctenopharyngodon idella) Toll-like receptor 22 gene, a fish-specific gene. Fish Shellfish Immunol 32:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Maher B (2009) Evolution: biology’s next top model? Nature 458:695

    Article  PubMed  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  PubMed  Google Scholar 

  • Meijer AH, Gabby Krens S, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar-Jagalska B, Spaink HP (2004) Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40:773–783

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Villaizan M, Chico V, Falco A, Perez L, Coll J, Estepa A (2009) The rainbow trout TLR9 gene and its role in the immune responses elicited by a plasmid encoding the glycoprotein G of the viral haemorrhagic septicaemia rhabdovirus (VHSV). Mol Immunol 46:1710–1717

    Article  CAS  PubMed  Google Scholar 

  • Oshiumi H, Tsujita T, Shida K, Matsumoto M, Ikeo K, Seya T (2003) Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54:791–800

    CAS  PubMed  Google Scholar 

  • Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Palti Y, Rodriguez M, Vallejo R, Rexroad C (2006) Mapping of Toll–like receptor genes in rainbow trout. Anim Genet 37:597–598

    Article  CAS  PubMed  Google Scholar 

  • Quiniou SM, Boudinot P, Bengtén E (2013) Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: identification of novel fish TLRs. Immunogenetics 65:511–530

    Article  CAS  PubMed  Google Scholar 

  • Rebl A, Siegl E, Köllner B, Fischer U, Seyfert H-M (2007) Characterization of twin toll-like receptors from rainbow trout (Oncorhynchus mykiss): evolutionary relationship and induced expression by Aeromonas salmonicida salmonicida. Dev Comp Immunol 31:499–510

    Article  CAS  PubMed  Google Scholar 

  • Rebl A, Goldammer T, Seyfert H-M (2010) Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol 134:139–150

    Article  CAS  PubMed  Google Scholar 

  • Roach JC et al (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez M, Wiens G, Purcell M, Palti Y (2005) Characterization of Toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics 57:510–519

    Article  CAS  PubMed  Google Scholar 

  • Sangrador–Vegas A, Martin SA, O’Dea PG, Smith TJ (2000) Cloning and characterization of the rainbow trout (Oncorhynchus mykiss) type II interleukin–1 receptor cDNA. Eur J Biochem 267:7031–7037

    Article  PubMed  Google Scholar 

  • Shin SC et al (2012) Transcriptomics and comparative analysis of three Antarctic notothenioid fishes. PLoS One 7:e43762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, Dower SK (2000) Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem 275:4670–4678

    Article  CAS  PubMed  Google Scholar 

  • Sundaram AY, Kiron V, Dopazo J, Fernandes JM (2012) Diversification of the expanded teleost-specific toll-like receptor family in Atlantic cod, Gadus morhua. BMC Evol Biol 12:256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi O et al (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  Google Scholar 

  • Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volff J (2004) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294

    Article  Google Scholar 

  • Werts C et al (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Antarctic organisms: cold-adaptation mechanisms and its application grant (PE14070) funded by the Korea Polar Research Institute (KOPRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 204 kb)

Figure S2

(DOCX 1156 kb)

Table S1

(DOCX 26 kb)

Table S2

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, D.H., Shin, S.C. & Park, H. Characterization of Toll-like receptor gene expression and the pathogen agonist response in the antarctic bullhead notothen Notothenia coriiceps . Immunogenetics 66, 563–573 (2014). https://doi.org/10.1007/s00251-014-0792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0792-3

Keywords

Navigation