Skip to main content

Advertisement

Log in

Electrostatic effects in saturation of membrane binding of cationic cell-penetrating peptide

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Membrane-active peptides that demonstrate cell-penetrating, antimicrobial or cytotoxic functions are diverse in their amino acid sequences, but share common physicochemical features like short length, amphipathic conformation in membrane environment and high net charge. Nonspecific electrostatic interactions of basic peptide residues with anionic membrane lipids play a crucial role in the initial binding of such peptides to plasma membranes of bacterial and mammalian cells. At the same time, a number of membrane-active peptides functions when they are localized at high concentrations on the lipid membranes. Dissecting the role of electrostatics in this functional peptide conditions is important to understand why the majority of them bear high positive charge. We have studied interaction of EB1 cell-penetrating peptide (charge + 8) with model anionic membranes. The saturation of peptide binding to liposomes that comprises 5%, 10% and 25% of negatively charged lipids (POPC/POPG mixture) was observed. We have found that peptide recharges liposomes and its surface saturating concentration increases with the amount of anionic lipids in a membrane so as a surface charge (bound peptide plus anionic lipids). This observation may be explained with the Gouy–Chapman theory based model with addition of independent effective peptide charges for peptide–peptide and peptide–lipid interactions, as well as steric saturation term. Additionally, in certain conditions, membrane bound peptide leads to liposome aggregation. In some lipid-to-peptide ratio regions disaggregation follows that may indicate an additional slow equilibration process after fast initial peptide binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida PF (2014) Membrane-active peptides: binding, translocation, and flux in lipid vesicles. Biochim Biophys Acta (BBA) Biomembr 1838(9):2216–2227

    Article  CAS  Google Scholar 

  • Almeida PF, Ladokhin AS, White SH (2012) Hydrogen-bond energetics drive helix formation in membrane interfaces. Biochim Biophys Acta (BBA) Biomembr 1818(2):178–182

    Article  CAS  Google Scholar 

  • Arias M, Haney EF, Hilchie AL, Corcoran JA, Hyndman ME, Hancock RE, Vogel HJ (2020) Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim Biophys Acta (BBA) Biomembr 1862(8):183228

    Article  CAS  Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587(12):1693–1702

    Article  CAS  Google Scholar 

  • DeLano WL et al (2002) Pymol: an open-source molecular graphics tool. CCP4 Newslett Protein Crystallogr 40(1):82–92

    Google Scholar 

  • Delaroche D, Aussedat B, Aubry S, Chassaing G, Burlina F, Clodic G, Bolbach G, Lavielle S, Sagan S (2007) Tracking a new cell-penetrating (w/r) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal Chem 79(5):1932–1938

    Article  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    Article  CAS  Google Scholar 

  • Durr UH, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112(11):6054–6074

    Article  CAS  Google Scholar 

  • Elmquist A, Lindgren M, Bartfai T, Langel Ü (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269(2):237–244

    Article  CAS  Google Scholar 

  • Epand RF, Maloy WL, Ramamoorthy A, Epand RM (2010) Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry 49(19):4076–4084

    Article  CAS  Google Scholar 

  • Haney EF, Straus SK, Hancock RE (2019) Reassessing the host defense peptide landscape. Front Chem 7:43

    Article  CAS  Google Scholar 

  • Hellmann N, Schwarz G (1998) Peptide–liposome association. A critical examination with mastoparan-x. Biochim Biophys Acta (BBA) Biomembr 1369(2):267–277

    Article  CAS  Google Scholar 

  • Hennessey JP Jr, Johnson WC Jr (1982) Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Anal Biochem 125(1):177–188

    Article  CAS  Google Scholar 

  • Islam MZ, Ariyama H, Alam JM, Yamazaki M (2014) Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Biochemistry 53(2):386–396

    Article  CAS  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic press, Cambridge

    Google Scholar 

  • Jobin ML, Bonnafous P, Temsamani H, Dole F, Grélard A, Dufourc EJ, Alves ID (2013) The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: toward an understanding of its selectivity for cancer cells. Biochim Biophys Acta (BBA) Biomembr 1828(6):1457–1470

    Article  CAS  Google Scholar 

  • Klocek G, Schulthess T, Shai Y, Seelig J (2009) Thermodynamics of melittin binding to lipid bilayers. aggregation and pore formation. Biochemistry 48(12):2586–2596

    Article  CAS  Google Scholar 

  • Ladokhin AS, White SH (2001) Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Bio 309(3):543–552

    Article  CAS  Google Scholar 

  • Last NB, Miranker AD (2013) Common mechanism unites membrane poration by amyloid and antimicrobial peptides. Proc Natl Acad Sci 110(16):6382–6387

    Article  CAS  Google Scholar 

  • Lee DK, Brender JR, Sciacca MF, Krishnamoorthy J, Yu C, Ramamoorthy A (2013) Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (msi-78). Biochemistry 52(19):3254–3263

    Article  CAS  Google Scholar 

  • Lundberg P, El-Andaloussi S, Sütlü T, Johansson H, Langel Ü (2007) Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 21(11):2664–2671

    Article  CAS  Google Scholar 

  • Murray D, Arbuzova A, Hangyás-Mihályné G, Gambhir A, Ben-Tal N, Honig B, McLaughlin S (1999) Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys J 77(6):3176–3188

    Article  CAS  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    Article  CAS  Google Scholar 

  • Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an \(\alpha \)-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta (BBA) Biomembr 1414(1–2):127–139

    Article  CAS  Google Scholar 

  • Peitzsch RM, Eisenberg M, Sharp KA, McLaughlin S (1995) Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J 68(3):729–738

    Article  CAS  Google Scholar 

  • Persson D, Thorén PE, Nordén B (2001) Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles. FEBS Lett 505(2):307–312

    Article  CAS  Google Scholar 

  • Sauder R, Seelig J, Ziegler A (2011) Thermodynamics of Lipid Interactions with Cell-Penetrating Peptides. In: Langel Ü (ed) Cell-Penetrating Peptides. Methods in Molecular Biology (Methods and Protocols), vol 683. (Humana Press). https://doi.org/10.1007/978-1-60761-919-2_10

  • Seelig J (2004) Thermodynamics of lipid–peptide interactions. Biochim Biophys Acta (BBA) Biomembr 1666(1):40–50

    Article  CAS  Google Scholar 

  • Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40(4):387–397

    Article  CAS  Google Scholar 

  • Stankowski S (1991) Surface charging by large multivalent molecules. Extending the standard Gouy–Chapman treatment. Biophys J 60(2):341–351

    Article  CAS  Google Scholar 

  • Tamba Y, Yamazaki M (2009) Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B 113(14):4846–4852

    Article  CAS  Google Scholar 

  • Tamba Y, Ariyama H, Levadny V, Yamazaki M (2010) Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B 114(37):12018–12026

    Article  CAS  Google Scholar 

  • Thorén PE, Persson D, Lincoln P, Nordén B (2005) Membrane destabilizing properties of cell-penetrating peptides. Biophys Chem 114(2–3):169–179

    Article  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017

    Article  CAS  Google Scholar 

  • Wadhwani P, Epand R, Heidenreich N, Bürck J, Ulrich A, Epand R (2012) Membrane-active peptides and the clustering of anionic lipids. Biophys J 103(2):265–274

    Article  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28(1):319–365

    Article  CAS  Google Scholar 

  • Wieprecht T, Beyermann M, Seelig J (1999) Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry 38(32):10377–10387

    Article  CAS  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1–2):27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to academician Michael Dubina for organizational and inspirational support of this study. The work was supported by RFBR grant no. 18-34-00992

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Svirina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svirina, A., Terterov, I. Electrostatic effects in saturation of membrane binding of cationic cell-penetrating peptide. Eur Biophys J 50, 15–23 (2021). https://doi.org/10.1007/s00249-020-01476-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01476-3

Keywords

Navigation