Skip to main content

Advertisement

Log in

Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to −3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10–100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leamy M, Smith G, Colmet-Daage F, Otowa M (1984) The morphological characteristics of Andisols 34–51

  2. Shoji S, Nanzyo M, Dahlgren R (1994) Volcanic ash soils: genesis, properties and utilization. Elsevier

  3. Ugolini FC, Dahlgren RA (2002) Soil development in volcanic ash. Global Environ Res English Edition 6:69–82

    Google Scholar 

  4. Tsai C, Chen Z, Kao C, Ottner F, Kao S, Zehetner F (2010) Pedogenic development of volcanic ash soils along a climosequence in northern Taiwan. Geoderma 156:48–59

    Article  CAS  Google Scholar 

  5. Duchauffour P (1977) Pédogénèse et classification. Masson, Paris

    Google Scholar 

  6. Berner RA (1991) A model for atmospheric CO sub 2 over phanerozoic time. Am J Sci (US) 291

  7. Dessert C, Dupré B, Gaillardet J, François LM, Allegre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273

    Article  CAS  Google Scholar 

  8. White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63:3277–3291. doi:10.1016/S0016-7037(99)00250-1

    Article  CAS  Google Scholar 

  9. Gislason SR, Oelkers EH, Eiriksdottir ES, Kardjilov MI, Gisladottir G, Sigfusson B, Snorrason A, Elefsen S, Hardardottir J, Torssander P (2009) Direct evidence of the feedback between climate and weathering. Earth Planet Sci Lett 277:213–222

    Article  CAS  Google Scholar 

  10. Huh Y (2003) Chemical weathering and climate—a global experiment: a review. Geosci J 7:277–288

    Article  Google Scholar 

  11. Aomine S, Wada K (1962) Differential weathering of volcanic ash and pumice, resulting in formation of hydrated halloysite. Am Mineral 47:1024–1048

    CAS  Google Scholar 

  12. Zambell C, Adams J, Gorring M, Schwartzman D (2012) Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux. Chem Geol 291:166–174

    Article  CAS  Google Scholar 

  13. Gleeson DB, Kennedy NM, Clipson N, Melville K, Gadd GM, McDermott FP (2006) Characterization of bacterial community structure on a weathered pegmatitic granite. Microb Ecol 51:526–534

    Article  PubMed  Google Scholar 

  14. Lu H, Sato Y, Fujimura R, Nishizawa T, Kamijo T, Ohta H (2011) Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter. Int J Syst Evol Microbiol 61: 404–407

  15. Sato Y, Hosokawa K, Fujimura R, Nishizawa T, Kamijo T, Ohta H (2009) Nitrogenase activity (acetylene reduction) of an iron-oxidizing Leptospirillum strain cultured as a pioneer microbe from a recent volcanic deposit on Miyake-jima, Japan. Microbes Environ 24:291–296

    Article  PubMed  Google Scholar 

  16. Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H (2012) Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site. Microbes Environ 27:19–29

    Article  PubMed  Google Scholar 

  17. Cockell CS, Kelly L, Summers S (2011) Microbiology of volcanic environments. Extremophiles handbook. Springer, pp. 917–933

  18. Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73

    Article  CAS  PubMed  Google Scholar 

  19. Hernández M, Dumont MG, Calabi M, Basualto D, Conrad R (2014) Ammonia oxidizers are pioneer microorganisms in the colonization of new acidic volcanic soils from South of Chile. Environ Microbiol Rep 6:70–79

    Article  PubMed  Google Scholar 

  20. King GM (2003) Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69:4067–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  22. Dunfield KE, King GM (2004) Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Appl Environ Microbiol 70:4242–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  24. Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  25. Kawano M, Tomita K (2001) Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation. Am Mineral 86:400–410

    Article  CAS  Google Scholar 

  26. Urakawa R, Shibata H, Kuroiwa M, Inagaki Y, Tateno R, Hishi T, Fukuzawa K, Hirai K, Toda H, Oyanagi N (2014) Effects of freeze–thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago. Soil Biol Biochem 74:82–94

    Article  CAS  Google Scholar 

  27. Bonan G (2015) Ecological climatology: concepts and applications. Cambridge University Press

  28. Iwatsuki Z, Mizutani M (1972) Coloured illustrations of bryophytes of Japan. Hoikusha, Osaka

    Google Scholar 

  29. Asahina Y (1956) Lichens of Japan: Nihon No Chii. Research Institute for Natural Resources

  30. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4, e1000255

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou HW, Li DF, Tam NF, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F (2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 5:741–749. doi:10.1038/ismej.2010.160

    Article  CAS  PubMed  Google Scholar 

  32. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  35. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898. doi:10.1111/j.1462-2920.2010.02193.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Felsenstein J (1985) Confidence limits on phylogenies with a molecular clock. Syst Biol 34:152–161

    Article  Google Scholar 

  40. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386

    Article  CAS  Google Scholar 

  41. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens M, Oksanen M, Suggests M (2007) The vegan package. Community ecology package

  42. Cossins A (2012) Temperature biology of animals. Springer Science & Business Media

  43. Zuo W, Moses ME, West GB, Hou C, Brown JH (2012) A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc R Soc Lond B Biol Sci 279:1840–1846

    Article  Google Scholar 

  44. Brady PV, Carroll SA (1994) Direct effects of CO 2 and temperature on silicate weathering: possible implications for climate control. Geochim Cosmochim Acta 58:1853–1856

    Article  CAS  Google Scholar 

  45. Hartmann J, Moosdorf N, Lauerwald R, Hinderer M, West AJ (2014) Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem Geol 363:145–163

    Article  CAS  Google Scholar 

  46. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. Springer Science & Business Media

  47. Stretch R, Viles H (2002) The nature and rate of weathering by lichens on lava flows on Lanzarote. Geomorphology 47:87–94

    Article  Google Scholar 

  48. Singh D, Lee-Cruz L, Kim W-S, Kerfahi D, Chun J-H, Adams JM (2014) Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biol Biochem 68:140–149

    Article  CAS  Google Scholar 

  49. Singh D, Takahashi K, Kim M, Chun J, Adams JM (2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb Ecol 63:429–437

    Article  PubMed  Google Scholar 

  50. Singh D, Takahashi K, Adams JM (2012) Elevational patterns in archaeal diversity on Mt Fuji. PLoS One 7(9), e44494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen M-M, Zhu Y-G, Su Y-H, Chen B-D, Fu B-J, Marschner P (2007) Effects of soil moisture and plant interactions on the soil microbial community structure. Eur J Soil Biol 43:31–38

    Article  CAS  Google Scholar 

  52. Zogg GP, Zak DR, Ringelberg DB, White DC, MacDonald NW, Pregitzer KS (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J61:475–481

    Article  Google Scholar 

  53. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  54. Lipson D, Schadt C, Schmidt S (2002) Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43:307–314

    Article  CAS  PubMed  Google Scholar 

  55. Zhang B, Liang C, He H, Zhang X (2013) Variations in soil microbial communities and residues along an altitude gradient on the northern slope of Changbai Mountain, China. PLoS One 8(6), e66184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeglin L, Rainey F, Wang B, Waythomas C, Talbot S (2013) Soil microbial structure and function post-volcanic eruption on Kasatochi Island and regional controls on microbial heterogeneity. AGU Fall Meet Abstr 1:0322

    Google Scholar 

  57. Liu L, Gundersen P, Zhang T, Mo J (2012) Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol Biochem 44:31–38

    Article  Google Scholar 

  58. Tripathi BM, Kim M, Lai-Hoe A, Shukor NA, Rahim RA, Go R, Adams JM (2013) pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol 86:303–311

    Article  CAS  PubMed  Google Scholar 

  59. Preem J-K, Truu J, Truu M, Mander Ü, Oopkaup K, Lõhmus K, Helmisaari H-S, Uri V, Zobel M (2012) Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecol Eng 49:10–17

    Article  Google Scholar 

  60. Cai W-J, Guo X, Chen C-TA, Dai M, Zhang L, Zhai W, Lohrenz SE, Yin K, Harrison PJ, Wang Y (2008) A comparative overview of weathering intensity and HCO 3− flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res 28:1538–1549

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Foundation (NRF) funded by the Korean government, Ministry of Education, Science and Technology (MEST) (NRF-0409-20150076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Adams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

(DOCX 1336 kb)

Supplementary Fig. S2

(DOCX 38 kb)

Supplementary Fig. S3

(DOCX 100 kb)

Supplementary Fig. S4

(DOCX 66 kb)

Supplementary Fig. S5

(DOCX 78 kb)

Supplementary Fig. S6

(DOCX 490 kb)

Supplementary Fig. S7

(DOCX 171 kb)

Supplementary Fig. S8

(DOCX 166 kb)

Supplementary Fig. S9

(DOCX 643 kb)

Table S1

(XLSX 602 kb)

Table S2

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerfahi, D., Tateno, R., Takahashi, K. et al. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates. Microb Ecol 73, 775–790 (2017). https://doi.org/10.1007/s00248-016-0873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0873-y

Keywords

Navigation