Skip to main content

Advertisement

Log in

Diversity of Freshwater Thioploca Species and Their Specific Association with Filamentous Bacteria of the Phylum Chloroflexi

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Phylogenetic diversity among filamentous sulfur-oxidizing bacteria of the genus Thioploca inhabiting freshwater/brackish environments was analyzed in detail. The 16S rRNA gene sequence of Thioploca found in a freshwater lake in Japan, Lake Okotanpe, was identical to that of Thioploca from Lake Ogawara, a brackish lake. The samples of the two lakes could be differentiated by the sequences of their 23S rRNA genes and 16S–23S rRNA internal transcribed spacer (ITS) regions. The 23S rRNA-based phylogenetic relationships between Thioploca samples from four lakes (Lake Okotanpe, Lake Ogawara, Lake Biwa, and Lake Constance) were similar to those based on the 16S rRNA gene sequences. In addition, multiple types of the ITS sequences were obtained from Thioploca inhabiting Lake Okotanpe and Lake Constance. Variations within respective Thioploca populations were also observed in the analysis of the soxB gene, involved in sulfur oxidation. As major members of the sheath-associated microbial community, bacteria of the phylum Chloroflexi were consistently detected in the samples from different lakes. Fluorescence in situ hybridization revealed that they were filamentous and abundantly distributed within the sheaths of Thioploca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Björnsson L, Hugenholtz P, Tyson GW, Blackall LL (2002) Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiol 148:2309–2318

    Article  Google Scholar 

  4. Brock J, Schulz-Vogt HN (2011) Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J 5:497–506

    Article  CAS  PubMed  Google Scholar 

  5. Chávez FP, Lünsdorf H, Jerez CA (2004) Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chikita K, Hattori M, Hagiwara E (1985) A field study on river-induced currents—an intermountain lake, Lake Okotanpe, Hokkaido. Jpn J Limnol 46:256–267

    Article  Google Scholar 

  7. Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  8. Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715

    Article  CAS  Google Scholar 

  9. Fukui M, Teske A, Aßmus B, Muyzer G, Widdel F (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch Microbiol 172:193–203

    Article  CAS  PubMed  Google Scholar 

  10. Gich F, Garcia-Gil J, Overmann J (2001) Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol 177:1–10

    Article  CAS  PubMed  Google Scholar 

  11. Girnth AC, Grünke LA, Felden J, Knittel K, Wenzhöfer F, de Beer D, Boetius A (2010) A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Environ Microbiol 13:495–505

    Article  PubMed  Google Scholar 

  12. Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, Harms H, Müller S (2009) Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4’,6’-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol 75:2111–2121

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holmkvist L, Arning ET, Küster-Heins K, Vandieken V, Peckmann J, Zabel M, Jørgensen BB (2010) Phosphate geochemistry, mineralization processes, and Thioploca distribution in shelf sediments off central Chile. Marine Geol 277:61–72

    Article  CAS  Google Scholar 

  15. Høgslund S, Nielsen JL, Nielsen LP (2010) Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments. FEMS Microbiol Ecol 73:110–120

    PubMed  Google Scholar 

  16. Høgslund S, Revsbech NP, Kuenen JG, Jørgensen BB, Gallardo VA, van de Vossenberg J, Nielsen JL, Holmkvist L, Arning ET, Nielsen LP (2009) Physiology and behaviour of marine Thioploca. ISME J 3:647–657

    Article  PubMed  Google Scholar 

  17. Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jørgensen BB (1977) Distribution of colorless sulfur bacteria (Beggiatoa spp.) in coastal marine sediment. Mar Biol 41:19–28

    Article  Google Scholar 

  19. Jørgensen BB, Gallardo VA (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313

    Article  Google Scholar 

  20. Kojima H, Koizumi Y, Fukui M (2006) Community structure of bacteria associated with sheaths of freshwater and brackish Thioploca species. Microb Ecol 52:765–773

    Article  PubMed  Google Scholar 

  21. Kojima H, Nakajima T, Fukui M (2007) Carbon source utilization and accumulation of respiration-related substances by freshwater Thioploca species. FEMS Microbiol Ecol 59:23–31

    Article  CAS  PubMed  Google Scholar 

  22. Kojima H, Teske A, Fukui M (2003) Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany. Appl Environ Microbiol 69:390–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  PubMed  Google Scholar 

  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  25. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA specific oligonucleotides designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142:1097–1106

    Article  CAS  PubMed  Google Scholar 

  26. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  27. Meyer B, Küver J (2007) Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73:7664–7679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moriarty TF, Mullan A, McGrath JW, Quinn JP, Elborn JS, Tunney MM (2006) Effect of reduced pH on inorganic polyphosphate accumulation by Burkholderia cepacia complex isolates. Lett Appl Microbiol 42:617–623

    CAS  PubMed  Google Scholar 

  29. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mußmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5:1923–1937

    Article  Google Scholar 

  31. Nishino M, Fukui M, Nakajima T (1998) Dense mats of Thioploca, gliding filamentous sulfur-oxidizing bacteria in Lake Biwa, central Japan. Water Res 32:953–957

    Article  CAS  Google Scholar 

  32. Olson FCW (1950) Quantitative estimates of filamentous algae. Trans Amer Microsc Soc 59:272–279

    Article  Google Scholar 

  33. Otte S, Kuenen JG, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197:171–178

    Article  CAS  PubMed  Google Scholar 

  35. Rabus R, Fukui M, Wilkes H, Widdel F (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 62:3605–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sagi T (1966) Determination of ammonia in the sea water by the indophenol method and its application to the coastal and offshore waters. Oceanogr Mag 18:43–51

    Google Scholar 

  37. Sahl JW, Gary MO, Harris JK, Spear JR (2011) A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico. Environ Microbiol 13:226–240

    Article  CAS  PubMed  Google Scholar 

  38. Salman V, Amann R, Girnth AC, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN (2011) A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. System Appl Microbiol 34:243–259

    Article  CAS  Google Scholar 

  39. Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418

    Article  CAS  PubMed  Google Scholar 

  40. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248

    Google Scholar 

  41. Takeda M, Suzuki I, Koizumi J (2004) Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the α-2 subclass of Proteobacteria. System Appl Microbiol 27:139–145

    Article  CAS  Google Scholar 

  42. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  43. Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotomeric determination of iron(II) with 1,10-phenanthroline in the presence of large amount of iron(III). Talanta 21:314–318

    Article  CAS  PubMed  Google Scholar 

  44. Teske A, Jørgensen BB, Gallardo VA (2009) Filamentous bacteria inhabiting the sheaths of marine Thioploca spp. on the Chilean continental shelf. FEMS Microbiol Ecol 68:164–172

    Article  CAS  PubMed  Google Scholar 

  45. Teske A, Ramsing NB, Küver J, Fossing H (1995) Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. System Appl Microbiol 18:517–526

    Article  Google Scholar 

  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  47. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306

    Article  CAS  PubMed  Google Scholar 

  48. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Akiyoshi O, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    Article  CAS  PubMed  Google Scholar 

  49. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wirsen CO, Brinkhoff T, Küver J, Muyzer G, Molyneaux S, Jannasch HW (1998) Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64:4057–4059

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Akifumi Ohtaka for informing us of the occurrence of Thioploca in Lake Okotanpe. We are grateful to Machiko Nishino, Kanako Ishikawa, and the crew members of Hakken-Go for their support with sampling in Lake Biwa. This study was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan, to Nemoto (22•56032), to Kojima (19770008) and to Fukui (22370005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisaya Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemoto, F., Kojima, H. & Fukui, M. Diversity of Freshwater Thioploca Species and Their Specific Association with Filamentous Bacteria of the Phylum Chloroflexi . Microb Ecol 62, 753–764 (2011). https://doi.org/10.1007/s00248-011-9916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9916-6

Keywords

Navigation