Skip to main content
Log in

Transfer of Enteric Pathogens to Successive Habitats as Part of Microbial Cycles

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Escherichia coli O157:H7 gfp and Salmonella enterica Typhimurium gfp passed through six successive habitats within a microbial cycle. Pathogen cultures were introduced into cow dung or fodder. Microscopically observed cells and CFUs were monitored in fodder, dung, dung-soil mix, rhizosphere and phyllosphere of cress or oat plants grown in infested dung–soil mix, and in excrements of snails or mice fed with contaminated cress or oat shoots. Both methods were sensitive enough to monitor cells and CFUs throughout the chain. There was a positive correlation between cells and CFUs. Both pathogens declined through the successive habitats, but with unexpected increased densities on plants compared to dung–soil mix. Pathogen densities were higher in the phyllosphere than the rhizosphere of cress, but for oat plants this was reverse. Survival in dung was better after passage through the digestive tract of cows than after introduction of cultures into dung. Positive correlations between pathogens and copiotrophic bacteria (CB) and dissolved organic carbon (DOC) were observed in dung and dung-soil mixtures, but at low DOC contents CB densities were higher than pathogen densities. Thus, the pathogens are able to cycle through different habitats, surviving or growing better at high DOC concentrations, but maintaining population densities that are sufficiently high to cause disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Barker GM (2002) Gastropods as pests in New Zealand pastoral agriculture, with emphasis on Agriolimacidae, Arionidae and Milacidae. In: Barker GM (ed) Molluscs as crop pests. CAB International, London, pp 361–415

    Chapter  Google Scholar 

  2. Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect 4:413–423

    Article  PubMed  Google Scholar 

  3. Crump JA, Griffin PM, Angulo FJ (2002) Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin Infect Dis 35:859–865

    Article  PubMed  Google Scholar 

  4. Davis MA, Cloud-Hansen KA, Carpenter J, Hovde CJ (2005) Escherichia coli O157:H7 in environments of culture-positive cattle. Appl Environ Microbiol 71:6816–6822

    Article  CAS  PubMed  Google Scholar 

  5. Dong Y, Iniguez AL, Ahmer BMM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790

    Article  CAS  PubMed  Google Scholar 

  6. Fairbrother JM, Nadeau E (2006) Escherichia coli: on-farm contamination of animals. Rev Sci Tech Off Int Epizoot 25:555–569

    CAS  Google Scholar 

  7. Franz E, Klerks MM, de Vos OJ, van Diepeningen AD, Termorshuizen AJ, van Bruggen AHC (2007) Farm prevalence of STEC stx1, stx2, eaeA and rfbE genes and survival of E. coli O157:H7 in manure from organic and low-input conventional dairy farms. Appl Environ Microbiol 73:2180–2190

    Article  CAS  PubMed  Google Scholar 

  8. Franz E, Semenov AV, Termorshuizen AJ, Bokhorst JG, van Bruggen AHC (2008) Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ Microbiol 10:313–327

    Article  CAS  PubMed  Google Scholar 

  9. Franz E, Semenov AV, van Bruggen AHC (2008) Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol 105:1569–1584

    Article  CAS  PubMed  Google Scholar 

  10. Franz E, van Bruggen AHC (2008) Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit Rev Microbiol 34:143–161

    Article  PubMed  Google Scholar 

  11. Franz E, van Diepeningen AD, de Vos OJ, van Bruggen AHC (2005) Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce. Appl Environ Microbiol 71:6165–6174

    Article  CAS  PubMed  Google Scholar 

  12. Franz E, Visser AA, Van Diepeningen AD, Klerks MM, Termorshuizen AJ, van Bruggen AHC (2007) Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol 24:106–112

    Article  CAS  PubMed  Google Scholar 

  13. Fratamico PM, Deng MY, Strobaugh TP, Palumbo SA (1997) Construction and characterization of Escherichia coli O157:H7 strains expressing firefly luciferase and green fluorescent protein and their use in survival studies. J Food Prot 60:1167–1173

    CAS  Google Scholar 

  14. Guber AK, Karns JS, Pachepsky YA, Sadeghi AM, van Kessel JS, Dao TH (2007) Comparison of release and transport of manure-borne Escherichia coli and enterococci under grass buffer conditions. Lett Appl Microbiol 44:161–167

    Article  CAS  PubMed  Google Scholar 

  15. Himathongkham S, Bahari S, Riemann H, Cliver D (1999) Survival of Escherichia coli O157:H7 and Salmonella typhimurium in cow manure and cow manure slurry. FEMS Microbiol Lett 178:251–257

    Article  CAS  PubMed  Google Scholar 

  16. Hovde CJ, Austin PR, Cloud KA, Williams CJ, Hunt CW (1999) Effect of cattle diet on Escherichia coli O157:H7 acid resitance. Appl Environ Microbiol 65:3233–3235

    CAS  PubMed  Google Scholar 

  17. Jensen AN, Dalsgaard A, Stockmarr A, Nielsen EM, Baggesen DL (2006) Survival and transmission of Salmonella enterica serovar Typhimurium in an outdoor organic pig environment. Appl Environ Microbiol 72:1833–1842

    Article  CAS  PubMed  Google Scholar 

  18. Jiang X, Morgan J, Doyle MP (2002) Fate of Escherichia coli O157:H7 in manure-amended soil. Appl Environ Microbiol 68:2605–2609

    Article  CAS  PubMed  Google Scholar 

  19. Klein DA, Casida LE Jr (1967) Escherichia coli die-out from normal soil as related to nutrient availability and the indigenous microflora. Can J Microbiol 13:1461–1470

    Article  CAS  PubMed  Google Scholar 

  20. Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AHC (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631

    Article  PubMed  Google Scholar 

  21. Klerks MM, van Gent-Pelzer M, Franz E, Zijlstra C, van Bruggen AHC (2007) Physiological and molecular response of Lactuca sativa to colonization by Salmonella enterica serovar Dublin. Appl Environ Microbiol 73:4905–4914

    Article  CAS  PubMed  Google Scholar 

  22. Koupriyanov AA, Semenov AM, Van Bruggen AHC, Netrusov AI, Semenova EV (2009) Dynamics of the survival of enteropathogenic and saprotrophic bacteria passing through a birds' digestive tract in their excrement and in water. Moscow Univ Biol Sci Bull 64:102–106

    Article  Google Scholar 

  23. Kudva IT, Blanch K, Hovde CJ (1998) Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Appl Environ Microbiol 64:3166–3174

    CAS  PubMed  Google Scholar 

  24. Kutter S, Hartmann A, Schmid M (2006) Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol Ecol 56:262–271

    Article  CAS  PubMed  Google Scholar 

  25. Maciorowski KG, Herrera P, Jones FT, Pillai SD, Ricke SC (2007) Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim Feed Sci Technol 133:109–136

    Article  CAS  Google Scholar 

  26. Park S, Worobo RW, Durst RA (2001) Escherichia coli O157:H7 as an emerging foodborne pathogen: a literature review. Crit Rev Biotechnol 21:27–48

    Article  CAS  PubMed  Google Scholar 

  27. Römling U, Rohde M, Olsen A, Normark S, Reinköster J (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23

    Article  PubMed  Google Scholar 

  28. Scott L, McGee P, Sheridan JJ, Earley B, Leonard N (2006) A comparison of the survival in feces and water of Escherichia coli O157:H7 grown under laboratory conditions or obtained from cattle feces. J Food Prot 69:6–11

    CAS  PubMed  Google Scholar 

  29. Semenov AM, van Bruggen AHC, Kunenkova NN, Franz E, Semenova EV, Mikhailovich VM, Sobolev AY, Lapa SA, Solodovnikov YP, Sayler RJ, Römling U, Netrusov AI (2004) Experiments for risk analysis of the spread of enteropathogens in the environment within the microbial cycle. Proc 2nd Int Conf “Biotechnology to Environment” Sport and Culture Publ. part II, Moscow State Univ, Moscow, Russia, pp 163–168

  30. Semenov AV, Franz E, van Overbeek L, Termorshuizen AJ, van Bruggen AHC (2008) Estimating the stability of E. coli O157:H7 survival in manure amended soils with different management histories. Environ Microbiol 10:1450–1459

    Article  PubMed  Google Scholar 

  31. Semenov AV, van Overbeek L, van Bruggen AHC (2009) Percolation and survival of E. coli O157:H7 and Salmonella enterica serovar Typhimurium in soil amended with contaminated dairy manure or slurry. Appl Environ Microbiol 75:3206–3215

    Article  CAS  PubMed  Google Scholar 

  32. Serrano S, Medina LM, Jurado M, Jodral M (2004) Microbiological quality of terrestrial gastropods prepared for human consumption. J Food Prot 67:1779–1781

    CAS  PubMed  Google Scholar 

  33. Shere JA, Bartlett KJ, Kaspar CW (1998) Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Appl Environ Microbiol 64:1390–1399

    CAS  PubMed  Google Scholar 

  34. Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353

    PubMed  Google Scholar 

  35. Solomon EB, Yaron S, Matthews KR (2002) Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68:397–400

    Article  CAS  PubMed  Google Scholar 

  36. Temelli S, Dokuzlu C, Cem Sen MK (2006) Determination of microbiological contamination sources during frozen snail meat processing stages. Food Control 17:22–29

    Article  Google Scholar 

  37. Tyler HL, Triplett EW (2008) Plant as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol 46:53–73

    Article  CAS  PubMed  Google Scholar 

  38. van Bruggen AHC, Franz E, Semenov AM (2008) Human pathogens in organic and conventional foods and effects of the environment. In: Givens I, Baxter S, Minihane AM, Shaw E (eds) Health benefits of organic food: effects of the environment. CAB International, Wallingford, pp 160–189

    Chapter  Google Scholar 

  39. Van Elsas JD, Hill P, Chronakova A, Grekova M, TopalovaY ED, Kristufek V (2007) Survival of genetically marked Escherichia coli O157:h7 in soil as affected by soil microbial community shifts. ISME J 1:204–214

    Article  PubMed  Google Scholar 

  40. Vialette M, Jandos-Rudnik AM, Guyard C, Legeay O, Pinon A, Lange M (2004) Validating the use of green fluorescent-marked Escherichia coli O157:H7 for assessing the organism behaviour in foods. J Appl Microbiol 96:1097–1104

    Article  CAS  PubMed  Google Scholar 

  41. Vidovic S, Block HC, Korber DR (2007) Effect of soil composition, temperature, indigenous microflora, and environmental conditions on the survival of Escherichia coli O157:H7. Can J Microbiol 53:822–829

    Article  CAS  PubMed  Google Scholar 

  42. Williams AP, Roberts P, Avery LM, Killham K, Jones DL (2006) Earthworms as vectors of Escherichia coli O157:H7 in soil and vermicomposts. FEMS Microbiol Ecol 58:54–64

    Article  CAS  PubMed  Google Scholar 

  43. Winfield MD, Groisman EA (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Envrion Microbiol 69:3687–3694

    Article  CAS  Google Scholar 

  44. Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multihost pathogens. Science 292:1109–1112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N.N. Kunenkova for preliminary laboratory work and E.V. Semenova for co-supervising N.N. Kunenkova and A.A. Kuprianov. This research and associated travel costs were funded by NWO-Russia collaborative grant #047.014.001 to A.H.C. van Bruggen and A.M. Semenov, a NATO-Russia Collaborative Linkage Grant, the EU CoreOrganic project ‘PATHORGANIC’ and by NWO fellowship #040.11.057 to A.M. Semenov. We are also thankful to the Erasmus Mundus External Cooperation project IAMONET-Russia for a cooperative grant to A.H.C. van Bruggen in 2008 and to A.M. Semenov in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Semenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, A.M., Kuprianov, A.A. & van Bruggen, A.H.C. Transfer of Enteric Pathogens to Successive Habitats as Part of Microbial Cycles. Microb Ecol 60, 239–249 (2010). https://doi.org/10.1007/s00248-010-9663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9663-0

Keywords

Navigation